Integrable quasiclassical deformations of cubic curves
dc.contributor.author | Kodama, Y. | |
dc.contributor.author | Konopelchenko, Boris | |
dc.contributor.author | Martínez Alonso, Luis | |
dc.contributor.author | Medina Reus, Elena | |
dc.date.accessioned | 2023-06-20T11:03:08Z | |
dc.date.available | 2023-06-20T11:03:08Z | |
dc.date.issued | 2005-11 | |
dc.description | ©2005 American Institute of Physics. One of the authors (L.M.A.) wishes to thank the members of the Physics Department of Lecce University for their warm hospitality. This work is partially supported by DGCYT Project BFM 2002-01607 and by the grant COFIN 2004 “Sintesi” One of the authors (Y.K.) is partially supported by NSF Grant No. DMS 0404931 | |
dc.description.abstract | A general scheme for determining and studying hydrodynamic type systems describing integrable deformations of algebraic curves is applied to cubic curves. Lagrange resolvents of the theory of cubic equations are used to derive and characterize these deformations. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGCYT | |
dc.description.sponsorship | COFIN | |
dc.description.sponsorship | NSF | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/34309 | |
dc.identifier.doi | 10.1063/1.2101067 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.2101067 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51648 | |
dc.issue.number | 11 | |
dc.journal.title | Journal of mathematical physics | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | BFM 2002-01607 | |
dc.relation.projectID | Grant 2004 "Sintesi" | |
dc.relation.projectID | DMS 0404931 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Whitham hierarchy | |
dc.subject.keyword | Growth | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Integrable quasiclassical deformations of cubic curves | |
dc.type | journal article | |
dc.volume.number | 46 | |
dcterms.references | 1 S. P. Novikov, S. V. Manakov, L. P. Pitaevski, and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method Plenum, New York, 1984. 2 E. D. Belokolos, A. I. Bobenko, V. Z. Enolski, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations Springer-Verlag, Berlin, 1994. 3 B. Dubrovin and S. Novikov, Russ. Math. Surveys 44, 35 1989. 4 H. Flaschka, M. G. Forest, and D. W. Mclauglin, Commun. Pure Appl. Math. 33, 739 1980. 5 B. A. Dubrovin, Commun. Math. Phys. 145, 415 1992. 6 I. M. Krichever, Funct. Anal. Appl. 22, 206 1988. 7 I. M. Krichever, Commun. Pure Appl. Math. 47, 437 1994. 8 A. Aoyama and Y. Kodama, Commun. Math. Phys. 182, 185 1996. 9 I. Krichever, M. Mineev-Weinstein, P. Wiegmann, and A. Zabrodin, Physica D 198, 1 2004. 10 A. Zabrodin, Theor. Math. Phys. 142, 166 2005. 11 R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, and P. Wiegmann, Nucl. Phys. B 704, 407 2005. 12 R. Teodorescu, A. Zabrodin, and P. Wiegmann, Phys. Rev. Lett. 95, 044502 2005. 13 M. Manas, L. Martinez Alonso, and E. Medina, J. Phys. A 40, 4815 1997. 14 Y. Kodama and B. G. Konopelchenko, J. Phys. A 35, L489 2002; in Deformations of Plane Algebraic Curves and Integrable Systems of Hydrodynamic type in Nonlinear Physics: Theory and Experiment II, edited by M. J. Ablowitz et al. World Scientific, Singapore, 2003. 15 B. G. Konopelchenko and L. Martínez Alonso, J. Phys. A 37, 7859 2004. 16 B. L. van der Waerden, Algebra, Vol. I Springer-Verlag, Berlin, 1991. 17 L. Redei, Introduction to Algebra Pergamon, Oxford, 1967, Vol. I. 18 I. G. Macdonald, Symmetric Functions and Hall Polynomials Clarendon, Oxford, 1979. 19 R. Y. Walker, Algebraic Curves Springer-Verlag, Berlin, 1978. 20 S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monographs Vol. 35 American Mathematical Society, Providence, RI, 1990. 21 M. Antonowicz, A. P. Fordy, and Q. P. Liu, Nonlinearity 4, 669 1991. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 896aafc0-9740-4609-bc38-829f249a0d2b | |
relation.isAuthorOfPublication.latestForDiscovery | 896aafc0-9740-4609-bc38-829f249a0d2b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- martinezalonso24libre.pdf
- Size:
- 459.32 KB
- Format:
- Adobe Portable Document Format