Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Integrable quasiclassical deformations of cubic curves

dc.contributor.authorKodama, Y.
dc.contributor.authorKonopelchenko, Boris
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T11:03:08Z
dc.date.available2023-06-20T11:03:08Z
dc.date.issued2005-11
dc.description©2005 American Institute of Physics. One of the authors (L.M.A.) wishes to thank the members of the Physics Department of Lecce University for their warm hospitality. This work is partially supported by DGCYT Project BFM 2002-01607 and by the grant COFIN 2004 “Sintesi” One of the authors (Y.K.) is partially supported by NSF Grant No. DMS 0404931
dc.description.abstractA general scheme for determining and studying hydrodynamic type systems describing integrable deformations of algebraic curves is applied to cubic curves. Lagrange resolvents of the theory of cubic equations are used to derive and characterize these deformations.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGCYT
dc.description.sponsorshipCOFIN
dc.description.sponsorshipNSF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34309
dc.identifier.doi10.1063/1.2101067
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.2101067
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51648
dc.issue.number11
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDBFM 2002-01607
dc.relation.projectIDGrant 2004 "Sintesi"
dc.relation.projectIDDMS 0404931
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordWhitham hierarchy
dc.subject.keywordGrowth
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleIntegrable quasiclassical deformations of cubic curves
dc.typejournal article
dc.volume.number46
dcterms.references1 S. P. Novikov, S. V. Manakov, L. P. Pitaevski, and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method Plenum, New York, 1984. 2 E. D. Belokolos, A. I. Bobenko, V. Z. Enolski, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations Springer-Verlag, Berlin, 1994. 3 B. Dubrovin and S. Novikov, Russ. Math. Surveys 44, 35 1989. 4 H. Flaschka, M. G. Forest, and D. W. Mclauglin, Commun. Pure Appl. Math. 33, 739 1980. 5 B. A. Dubrovin, Commun. Math. Phys. 145, 415 1992. 6 I. M. Krichever, Funct. Anal. Appl. 22, 206 1988. 7 I. M. Krichever, Commun. Pure Appl. Math. 47, 437 1994. 8 A. Aoyama and Y. Kodama, Commun. Math. Phys. 182, 185 1996. 9 I. Krichever, M. Mineev-Weinstein, P. Wiegmann, and A. Zabrodin, Physica D 198, 1 2004. 10 A. Zabrodin, Theor. Math. Phys. 142, 166 2005. 11 R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, and P. Wiegmann, Nucl. Phys. B 704, 407 2005. 12 R. Teodorescu, A. Zabrodin, and P. Wiegmann, Phys. Rev. Lett. 95, 044502 2005. 13 M. Manas, L. Martinez Alonso, and E. Medina, J. Phys. A 40, 4815 1997. 14 Y. Kodama and B. G. Konopelchenko, J. Phys. A 35, L489 2002; in Deformations of Plane Algebraic Curves and Integrable Systems of Hydrodynamic type in Nonlinear Physics: Theory and Experiment II, edited by M. J. Ablowitz et al. World Scientific, Singapore, 2003. 15 B. G. Konopelchenko and L. Martínez Alonso, J. Phys. A 37, 7859 2004. 16 B. L. van der Waerden, Algebra, Vol. I Springer-Verlag, Berlin, 1991. 17 L. Redei, Introduction to Algebra Pergamon, Oxford, 1967, Vol. I. 18 I. G. Macdonald, Symmetric Functions and Hall Polynomials Clarendon, Oxford, 1979. 19 R. Y. Walker, Algebraic Curves Springer-Verlag, Berlin, 1978. 20 S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monographs Vol. 35 American Mathematical Society, Providence, RI, 1990. 21 M. Antonowicz, A. P. Fordy, and Q. P. Liu, Nonlinearity 4, 669 1991.
dspace.entity.typePublication
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martinezalonso24libre.pdf
Size:
459.32 KB
Format:
Adobe Portable Document Format

Collections