Robust estimators for the log-logistic model based on ranked set sampling

dc.contributor.authorFelipe Ortega, Ángel
dc.contributor.authorJaenada Malagón, María
dc.contributor.authorMiranda Menéndez, Pedro
dc.contributor.authorPardo Llorente, Leandro
dc.date.accessioned2025-11-06T08:43:45Z
dc.date.available2025-11-06T08:43:45Z
dc.date.issued2025
dc.descriptionThis version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s42081-024-00272-z
dc.description.abstractIn this paper, we introduce a novel family of estimators for the shape and scale parameters of the log-logistic distribution being robust when rank set sample method for data selection is used. Rank set sampling effectively reduces the influence of extreme data points. The log-logistic distribution is a versatile model, suitable in various fields such as Economics, Engineering, and Hydrology. Our proposed family of estimators is based on the density power divergence, chosen for its demonstrated robustness and efficiency. Notably, this family includes the classical maximum likelihood estimator as a special case. Besides explicit forms of the estimators, their asymptotic distribution is derived, proving the consistency of the estimators. Finally, a comprehensive simulation study illustrates the significant robustness of the proposed estimators in the presence of data contamination, while also performing competitively with traditional estimators, including the maximum likelihood estimator in terms of efficiency.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.statuspub
dc.identifier.doi10.1007/s42081-024-00272-z
dc.identifier.issn2520-8756
dc.identifier.issn2520-8764
dc.identifier.officialurlhttps://doi.org/10.1007/s42081-024-00272-z
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125802
dc.issue.number1
dc.journal.titleJapanese Journal of Statistics and Data Science
dc.language.isoeng
dc.page.final216
dc.page.initial189
dc.publisherSpringer
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124933NB-I00/ES/NUEVOS METODOS ROBUSTOS PARA TESTS CON DISPOSITIVOS DE UN SOLO USO NO DESTRUCTIBLES BAJO EL MODELO DE ESFUERZOS PROGRESIVOS/
dc.rights.accessRightsopen access
dc.subject.keywordLog-logistic distribution
dc.subject.keywordRank set sample
dc.subject.keywordMinimum density power divergence estimator
dc.subject.keywordRobustness
dc.subject.keywordEfficiency
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleRobust estimators for the log-logistic model based on ranked set sampling
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublication72ddce0d-fbc4-4233-800c-cbd2cc36a012
relation.isAuthorOfPublication931cc892-86a0-4d44-9343-7b54535c00a2
relation.isAuthorOfPublicationd940fcaa-13c3-4bad-8198-1025a668ed71
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscovery72ddce0d-fbc4-4233-800c-cbd2cc36a012

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
loglogistic-model.pdf
Size:
499.99 KB
Format:
Adobe Portable Document Format

Collections