Finite central extensions of o-minimal groups
| dc.contributor.author | Baro González, Elías | |
| dc.contributor.author | Palacín Cruz, Daniel | |
| dc.date.accessioned | 2025-10-07T18:16:52Z | |
| dc.date.available | 2025-10-07T18:16:52Z | |
| dc.date.issued | 2025 | |
| dc.description | 2025 Acuerdos transformativos CRUE | |
| dc.description.abstract | We answer in the affirmative a conjecture of Berarducci et al. (Confl. Math. 2(4): 473–496, 2010) for solvable groups, which is an o-minimal version of a particular case of Milnor’s isomorphism conjecture (Milnor, Comment Math Helv 58(1): 72–85, 1983). We prove that every abstract finite central extension of a definably connected solvable definable group in an o-minimal structure is equivalent to a definable (hence topological) finite central extension. The proof relies on an o-minimal adaptation of the higher inflation-restriction exact sequence due to Hochschild and Serre. As in Milnor (Comment Math Helv 58(1): 72–85, 1983), we also prove in o-minimal expansions of real closed fields that the conjecture reduces to definably simple groups. | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación | |
| dc.description.sponsorship | Universidad Complutense de Madrid | |
| dc.description.status | pub | |
| dc.identifier.doi | 10.1007/s00209-025-03796-6 | |
| dc.identifier.issn | 0025-5874 | |
| dc.identifier.issn | 1432-1823 | |
| dc.identifier.officialurl | https://doi.org/10.1007/s00209-025-03796-6 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/124629 | |
| dc.journal.title | Mathematische Zeitschrif | |
| dc.language.iso | eng | |
| dc.page.initial | 87(23) | |
| dc.publisher | Springer | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122752NB-I00/ES/ESTRUCTURAS ALGEBRAICAS, ANALITICAS Y O-MINIMALES/ | |
| dc.relation.projectID | UCM 910444 | |
| dc.rights | Attribution 4.0 International | en |
| dc.rights.accessRights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.keyword | o-Minimal | |
| dc.subject.keyword | Central extension | |
| dc.subject.keyword | Second cohomology | |
| dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
| dc.subject.ucm | Grupos (Matemáticas) | |
| dc.subject.unesco | 1102.10 Teoría de Modelos | |
| dc.subject.unesco | 1210.08 Grupos de Lie | |
| dc.title | Finite central extensions of o-minimal groups | |
| dc.type | journal article | |
| dc.volume.number | 310 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 8695b08a-762f-4ef9-ad24-b6fe687ab7cd | |
| relation.isAuthorOfPublication | f173a7c4-2532-4caf-8464-59f9fd9483c6 | |
| relation.isAuthorOfPublication.latestForDiscovery | 8695b08a-762f-4ef9-ad24-b6fe687ab7cd |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- extensions_o-minimalgroups.pdf
- Size:
- 378.73 KB
- Format:
- Adobe Portable Document Format


