Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Disjointly strictly-singular inclusions between rearrangement invariant spaces

dc.contributor.authorGarcía del Amo Jiménez, Alejandro José
dc.contributor.authorHernández, Francisco L.
dc.contributor.authorSánchez de los Reyes, Víctor Manuel
dc.contributor.authorSemenov, Evgeny M.
dc.date.accessioned2023-06-20T18:50:36Z
dc.date.available2023-06-20T18:50:36Z
dc.date.issued2000
dc.description.abstractA linear operator between two Banach spaces X and Y is strictly-singular (or Kato) if it fails to be an isomorphism on any infinite dimensional subspace. A weaker notion for Banach lattices introduced in [8] is the following one: an operator T from a Banach lattice X to a Banach space Y is said to be disjointly strictly-singular if there is no disjoint sequence of non-null vectors (xn)n∈N in X such that the restriction of T to the subspace [(xn)∞n=1] spanned by the vectors (xn)n∈N is an isomorphism. Clearly every strictly-singular operator is disjointly strictly-singular but the converse is not true in general (consider for example the canonic inclusion Lq[0, 1]↪Lp[0, 1] for 1≤p<q<∞). In the special case of considering Banach lattices X with a Schauder basis of disjoint vectors both concepts coincide. The notion of disjointly strictly-singular has turned out to be a useful tool in the study of lattice structure of function spaces (cf. [7–9]). In general the class of all disjointly strictly-singular operators is not an operator ideal since it fails to be stable with respect to the composition on the right. The aim of this paper is to study when the inclusion operators between arbitrary rearrangement invariant function spaces E[0, 1] ≡ E on the probability space [0, 1] are disjointly strictly-singular operators.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22843
dc.identifier.doi10.1112/S0024610700001150
dc.identifier.issn1469-7750
dc.identifier.officialurlhttp://jlms.oxfordjournals.org/content/62/1/239.abstract
dc.identifier.relatedurlhttp://www.oxfordjournals.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58749
dc.issue.number1
dc.journal.titleJournal London Mathematical Society
dc.page.final252
dc.page.initial239
dc.publisherLondon Mathematical Society
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.98
dc.subject.keywordDisjointly strictly-singular
dc.subject.keywordBanach lattice
dc.subject.keywordInclusions
dc.subject.keywordRearrangement invariant (r.i.) function spaces
dc.subject.keywordCharacterizations of L 1 and L 1 among the r.i. function spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleDisjointly strictly-singular inclusions between rearrangement invariant spaces
dc.typejournal article
dc.volume.number62
dspace.entity.typePublication

Download

Collections