Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Disjointly strictly-singular inclusions between rearrangement invariant spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2000

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

London Mathematical Society
Citations
Google Scholar

Citation

Abstract

A linear operator between two Banach spaces X and Y is strictly-singular (or Kato) if it fails to be an isomorphism on any infinite dimensional subspace. A weaker notion for Banach lattices introduced in [8] is the following one: an operator T from a Banach lattice X to a Banach space Y is said to be disjointly strictly-singular if there is no disjoint sequence of non-null vectors (xn)n∈N in X such that the restriction of T to the subspace [(xn)∞n=1] spanned by the vectors (xn)n∈N is an isomorphism. Clearly every strictly-singular operator is disjointly strictly-singular but the converse is not true in general (consider for example the canonic inclusion Lq[0, 1]↪Lp[0, 1] for 1≤p<q<∞). In the special case of considering Banach lattices X with a Schauder basis of disjoint vectors both concepts coincide. The notion of disjointly strictly-singular has turned out to be a useful tool in the study of lattice structure of function spaces (cf. [7–9]). In general the class of all disjointly strictly-singular operators is not an operator ideal since it fails to be stable with respect to the composition on the right. The aim of this paper is to study when the inclusion operators between arbitrary rearrangement invariant function spaces E[0, 1] ≡ E on the probability space [0, 1] are disjointly strictly-singular operators.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections