Moments of the Wigner distribution of rotationally symmetric partially coherent light
dc.contributor.author | Bastiaans, Martin J. | |
dc.contributor.author | Alieva Krasheninnikova, Tatiana | |
dc.date.accessioned | 2023-06-20T10:49:25Z | |
dc.date.available | 2023-06-20T10:49:25Z | |
dc.date.issued | 2003-12-15 | |
dc.description | © 2003 Optical Society of America | |
dc.description.abstract | The Wigner distribution of rotationally symmetric partially coherent light is considered, and the constraints for its moments are derived. Although all odd-order moments vanish, these constraints lead to a drastic reduction in the number of parameters that we need to describe all even-order moments: whereas in general we have (N + 1) (N + 2) (N + 3)/6 different moments of order N, this number reduces to (1 + N/2)(2) in the case of rotational symmetry. A way to measure the moments as intensity moments in the output planes of (generally anamorphic) fractional Fourier-transform systems is presented. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27795 | |
dc.identifier.doi | 10.1364/OL.28.002443 | |
dc.identifier.issn | 0146-9592 | |
dc.identifier.officialurl | http://dx.doi.org/10.1364/OL.28.002443 | |
dc.identifier.relatedurl | http://www.opticsinfobase.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51289 | |
dc.issue.number | 24 | |
dc.journal.title | Optics letters | |
dc.language.iso | eng | |
dc.page.final | 2445 | |
dc.page.initial | 2443 | |
dc.publisher | Optical Society of America | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Optics | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Moments of the Wigner distribution of rotationally symmetric partially coherent light | |
dc.type | journal article | |
dc.volume.number | 28 | |
dcterms.references | 1. E. Wigner, Phys. Rev. 40, 749 (1932). 2. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968). 3. L. Mandel and E. Wolf, J. Opt. Soc. Am. 66, 529 (1976). 4. R. Simon and N. Mukunda, J. Opt. Soc. Am. A 10, 95 (1993). 5. R. Martínez-Herrero, P. M. Mejías, and C. Martínez, Opt. Lett. 20, 651 (1995). 6. J. Serna, F. Encinas-Sanz, and G. Nemes¸, J. Opt. Soc. Am. A 18, 1726 (2001). 7. M. J. Bastiaans and T. Alieva, J. Opt. Soc. Am. A 19, 1763 (2002). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f1512137-328a-4bb6-9714-45de778c1be4 | |
relation.isAuthorOfPublication.latestForDiscovery | f1512137-328a-4bb6-9714-45de778c1be4 |
Download
Original bundle
1 - 1 of 1