Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Moments of the Wigner distribution of rotationally symmetric partially coherent light

dc.contributor.authorBastiaans, Martin J.
dc.contributor.authorAlieva Krasheninnikova, Tatiana
dc.date.accessioned2023-06-20T10:49:25Z
dc.date.available2023-06-20T10:49:25Z
dc.date.issued2003-12-15
dc.description© 2003 Optical Society of America
dc.description.abstractThe Wigner distribution of rotationally symmetric partially coherent light is considered, and the constraints for its moments are derived. Although all odd-order moments vanish, these constraints lead to a drastic reduction in the number of parameters that we need to describe all even-order moments: whereas in general we have (N + 1) (N + 2) (N + 3)/6 different moments of order N, this number reduces to (1 + N/2)(2) in the case of rotational symmetry. A way to measure the moments as intensity moments in the output planes of (generally anamorphic) fractional Fourier-transform systems is presented.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27795
dc.identifier.doi10.1364/OL.28.002443
dc.identifier.issn0146-9592
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OL.28.002443
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51289
dc.issue.number24
dc.journal.titleOptics letters
dc.language.isoeng
dc.page.final2445
dc.page.initial2443
dc.publisherOptical Society of America
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordOptics
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleMoments of the Wigner distribution of rotationally symmetric partially coherent light
dc.typejournal article
dc.volume.number28
dcterms.references1. E. Wigner, Phys. Rev. 40, 749 (1932). 2. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968). 3. L. Mandel and E. Wolf, J. Opt. Soc. Am. 66, 529 (1976). 4. R. Simon and N. Mukunda, J. Opt. Soc. Am. A 10, 95 (1993). 5. R. Martínez-Herrero, P. M. Mejías, and C. Martínez, Opt. Lett. 20, 651 (1995). 6. J. Serna, F. Encinas-Sanz, and G. Nemes¸, J. Opt. Soc. Am. A 18, 1726 (2001). 7. M. J. Bastiaans and T. Alieva, J. Opt. Soc. Am. A 19, 1763 (2002).
dspace.entity.typePublication
relation.isAuthorOfPublicationf1512137-328a-4bb6-9714-45de778c1be4
relation.isAuthorOfPublication.latestForDiscoveryf1512137-328a-4bb6-9714-45de778c1be4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AlievaT58libre.pdf
Size:
84.36 KB
Format:
Adobe Portable Document Format

Collections