Compacidad en el marco de las dualidades de grupos abelianos
Loading...
Download
Official URL
Full text at PDC
Publication date
2024
Defense date
29/05/2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
La Tesis trata sobre grupos topológicos abelianos. Al hablar de dualidad en la categoría GT A de los grupos topológicos abelianos, el objeto dualizante es el círculo unidad T del plano complejo con la topología inducida por la euclídea del plano. El grupo dual de un grupo topológico abeliano (G, τ ) es el grupo formado por los caracteres τ-continuos, respecto de la operación definida puntualmente. Es frecuente denominarlo G∧ o (G, τ )∧. Una dualidad es un par ⟨G,H⟩ donde G es un grupo abeliano y H un subgrupo de caracteres definidos en G. Una topología de grupo ν en G es compatible con la dualidad ⟨G,H⟩ si (G, ν)∧ = H. La familia de las topologías compatibles tiene un mínimo que es la topología inicial en G respecto de la familia de caracteres H, y que suele denominarse σ(G,H).En general no tiene un máximo, y cuando lo tiene se denomina topología de Mackey de G respecto de la dualidad ⟨G,H⟩...
This Thesis deals with abelian topological groups. When considering the duality in the category GT A of abelian topological groups, the dualizing object is the unit circle T of the complex plane with the topology induced by the Euclidean plane. The dual group of an abelian topological group (G, τ ) is the group formed by all τ-continuous characters, with the natural pointwise operation. It is often called G∧ or (G, τ )∧. A duality is a pair ⟨G,H⟩ where G is an abelian group and H is a subgroup of characters defined on G. A group topology ν on G is compatible with the duality ⟨G,H⟩ if (G, ν)∧ = H. The minimum of the family of all compatible topologies is the initial topology on G relative to the family of characters H, which is often called σ(G,H). In general this family does not have a maximum, and when it does it is called the Mackey topology of G relative to the duality ⟨G,H⟩...
This Thesis deals with abelian topological groups. When considering the duality in the category GT A of abelian topological groups, the dualizing object is the unit circle T of the complex plane with the topology induced by the Euclidean plane. The dual group of an abelian topological group (G, τ ) is the group formed by all τ-continuous characters, with the natural pointwise operation. It is often called G∧ or (G, τ )∧. A duality is a pair ⟨G,H⟩ where G is an abelian group and H is a subgroup of characters defined on G. A group topology ν on G is compatible with the duality ⟨G,H⟩ if (G, ν)∧ = H. The minimum of the family of all compatible topologies is the initial topology on G relative to the family of characters H, which is often called σ(G,H). In general this family does not have a maximum, and when it does it is called the Mackey topology of G relative to the duality ⟨G,H⟩...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 29-05-2023