Cien años de la Conjetura de Poincaré(English: One hundred years of the Poincaré conjecture).

dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-20T10:34:38Z
dc.date.available2023-06-20T10:34:38Z
dc.date.issued2004
dc.description.abstractEste año se celebra el sesquicentenario del nacimiento de Henri Poincare y el centenario de la Conjetura de Poincare, quiza uno de los problemas mas famosos de todos los tiempos en Geometrıa, y que ha permitido abrir nuevos campos de investigacion durante el pasado siglo, y sin duda en el presente. Tal es su relevancia que ha sido incluido en la lista de siete problemas para el nuevo milenio propuestos por el Clay Mathematics Institute, cuya resolucion esta dotada de un premio de un millon de dolares [3]. El centenario llega justo en el momento en el que es posible que se haya dado una prueba definitiva de la misma por parte del matematico ruso G. Perelman, prueba que, aunque se encuentra bajo el escrupuloso analisis de diversos grupos de investigacion por todo el planeta, es reconocida como un verdadero tour de force. Nos proponemos en estas lıneas describir brevemente la historia de la conjetura y del gran matematico que la propuso.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21141
dc.identifier.issn1138-8927
dc.identifier.officialurlhttp://gaceta.rsme.es/abrir.php?id=426&zw=100256
dc.identifier.relatedurlhttp://gaceta.rsme.es
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50616
dc.issue.number3
dc.journal.titleLa Gaceta de la Real Sociedad Matemática Española
dc.language.isospa
dc.page.final653
dc.page.initial629
dc.publisherReal Sociedad Matemática Española
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleCien años de la Conjetura de Poincaré(English: One hundred years of the Poincaré conjecture).
dc.typejournal article
dc.volume.number7
dcterms.referencesE. Abbott, Flatland: a Romance of many dimensions, Second Edition, 1884. M. Anderson, Geometrization of 3-manifolds via the Ricci flow, Notices Amer.Math. Soc. 51 (2004), 184–193. Clay Mathematics Institute, Millenium Problems,http://www.claymath.org/millennium/ S. Donaldson, An application of gauge theory to four-dimensional topology. J.Diff. Geom. 18 (1983), 279–315. M. Freedman, The topology of four-dimensional manifolds. J. Diff. Geom. 17 (1982), 357–453. W. Jaco y P. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math.Soc. 21, no. 220 (1979). K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Math. 761, Springer, 1979. R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255–306. R. Hamilton, The Ricci flow on surfaces, Contemporary Math. 71 (1988), 237–262. R. Hamilton, Formation of singularities in the Ricci flow, Surveys in Differential Geometry, Vol. 2, International Press, 1995, 7–136. H. Kneser, Geschlossene Fl¨achen in dreidimensionalen Mannigfaltigkeiten,Jahresber. Deutsch. Maht. Verein. 38 (1929), 248–260. P. Kronheimer y T. Mrowka, Witten’s conjecture and property P. Geom. Topol.8 (2004), 295–310. W. S. Massey, A basic course in Algebraic Topology, Graduate Texts in Maths, J. Milnor, On manifolds homeomorphic to the 7-sphere. Ann. of Math. (2) 64 (1956), 399–405. J. Milnor, Towards the Poincar´e Conjecture and the classification of 3-manifolds, Notices Amer. Math. Soc. 50 (2003), 1226–1233. E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. of Math. (2) 56 (1952), 96–114. J. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms.Bull. Amer. Math. Soc. 65 (1959), 332–334. G. Perelman, The entropy formula for the Ricci flow and its geometric applications,http://xxx.lanl.gov/math.DG/0211159 G. Perelman, Ricci flow with surgery on three-manifolds, http://xxx.lanl.gov/math.DG/0303109 G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds,http://xxx.lanl.gov/math.DG/0307245 H. Poincare, Analysis situs, J. de l’ Ecole Polytechnique 1 (1895), 1–121. H. Poincare, Second complement a l’analysis situs, Proc. London Math. Soc. 32 (1900), 277–308. H. Poincare, Cinquieme complement a l’analysis situs,Rend. Circ. Mat. Palermo 18 (1904), 45–110. H. Poincare, Oeuvres, Tome VI, Paris, 1953. H. Poincare, La science et l’hypothese, Paris, Flammarion, 1902. H. Poincare, Les methodes nouvelles de la mecanique celeste, Dover Publications,Inc. New York, 1957. D. Rolfsen, Knots and links. Mathematics Lecture Series, 7. Publish or Perish,Inc., Houston, TX, 1990. S. Smale, Generalized Poincare’s conjecture in dimensions greater than four.Ann. of Math. (2) 74 (1961), 391–406. J. Stallings, Polyhedral homotopy-spheres. Bull. Amer. Math. Soc. 66 (1960),485–488. W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357–381. E. Zeeman, The generalised Poincar´e conjecture. Bull.Amer. Math. Soc. 67 (1961), 270. Fotografıas,http://www-gap.dcs.st-and.ac.uk/∼history/PictDisplay/Poincare.html Internet Encyclopedia of Philosophy,http://www.utm.edu/research/iep/p/poincare.htm PlanetMath Encyclopedia,http://planetmath.org/encyclopedia/Poincare.html The MacTutor History of Mathematics archive,http://www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/Poincare.html
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz48.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format

Collections