Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Strange and nonstrange quark mass dependence of elastic light resonances from SU(3) unitarized chiral perturbation theory to one loop

dc.contributor.authorNebreda Manjón, Jenifer
dc.contributor.authorPeláez Sagredo, José Ramón
dc.date.accessioned2023-06-20T04:02:42Z
dc.date.available2023-06-20T04:02:42Z
dc.date.copyright©2010 The American Physical Society. We thank C. Hanhart, E. Oset, and G. Ríos for useful discussions, J. A. Oller for suggesting us to include the KSRF relation in our study, and W. Dunwoodie for providing us with lists of experimental K data. This work was partially supported by the Spanish Ministerio de Educación y Ciencia research Contracts No. FPA2007-29115-E, No. FPA2008- 00592, and No. FIS2006-03438, U. Complutense/Banco Santander Grants No. PR34/07- 15875-BSCH and No. UCM-BSCH GR58/08 910309. We acknowledge the support of the European Community-Research Infrastructure Integrating Activity Study of Strongly Interacting Matter (acronym HadronPhysics2, Grant Agreement No. 227431) under the Seventh Framework Programme of EU.en
dc.date.issued2010-03-01
dc.description.abstractWe study the light quark mass dependence of the f _0(600), к(800), ρ(770), and K*(892) resonance parameters generated from elastic meson-meson scattering using unitarized one-loop chiral perturbation theory. First, we show that it is possible to fit simultaneously all experimental scattering data up to 0.8-1 GeV together with lattice results on decay constants and scattering lengths up to a pion mass of 400 MeV, using chiral parameters compatible with existing determinations. Then, the strange and nonstrange quark masses are varied from the chiral limit up to values of interest for lattice studies. In these amplitudes, the mass and width of the ρ(770) and K*(892) present a similar and smooth quark mass dependence. In contrast, both scalars present a similar nonanalyticity at high quark masses. Nevertheless, the f_0(600) dependence on the nonstrange quark mass is stronger than for the к(800) and the vectors. We also confirm the lattice assumption of quark mass independence of the vector two-meson coupling that, in contrast, is violated for scalars. As a consequence, vector widths are very well approximated by the Kawarabayashi-Suzuki-Riazuddin- Fayyazuddin relation, and their masses are shown to scale like their corresponding meson decay constants.en
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea - FP7
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipUniversidad Complutense de Madrid - Banco Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35100
dc.identifier.citationNebreda, J., y J. R. Peláez. «Strange and nonstrange quark mass dependence of elastic light resonances from SU(3) unitarized chiral perturbation theory to one loop». Physical Review D, vol. 81, n.o 5, marzo de 2010, p. 054035. APS, https://doi.org/10.1103/PhysRevD.81.054035.
dc.identifier.doi10.1103/PhysRevD.81.054035
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.81.054035
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44844
dc.issue.number5
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDHadronPhysics2 (227431)
dc.relation.projectIDFPA2007-29115-E
dc.relation.projectIDFPA2008-00592
dc.relation.projectIDFIS2006-03438
dc.relation.projectIDPR34/07-15875-BSCH
dc.relation.projectIDUCM-BSCH GR58/08 910309
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordπ-π scattering
dc.subject.keywordPhase-shift analysis
dc.subject.keywordGev-c
dc.subject.keywordK scattering
dc.subject.keywordMomentum-transfer
dc.subject.keywordScalar mesons
dc.subject.keywordπ&π
dc.subject.keywordQcd
dc.subject.keywordParticles
dc.subject.keywordA(0)(980)
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleStrange and nonstrange quark mass dependence of elastic light resonances from SU(3) unitarized chiral perturbation theory to one loopen
dc.typejournal article
dc.volume.number81
dcterms.references[1] S. Aoki et al., Phys. Rev. D 60, 114508 (1999). [2] K. F. Liu, Prog. Theor. Phys. Suppl. 168, 160 (2007); C. McNeile and C. Michael, Phys. Rev. D 74, 014508 (2006); M. G. Alford and R. L. Jaffe, Nucl. Phys. B578, 367 (2000); T. Kunihiro et al., Phys. Rev. D 70, 034504 (2004). [3] C. Hanhart, J. R. Peláez, and G. Rios, Phys. Rev. Lett. 100, 152001 (2008). [4] J. Nagata, S. Muroya, and A. Nakamura, Phys. Rev. C 80, 045203 (2009); S. Prelovsek and D. Mohler, Phys. Rev. D 79, 014503 (2009). [5] C. J. Hogan, Rev. Mod. Phys. 72, 1149 (2000); H. Oberhummer et al., Science 289, 88 (2000); T. Damour and J. F. Donoghue, Phys. Rev. D 78, 014014 (2008); T. E. Jeltema and M. Sher, Phys. Rev. D 61, 017301 (1999). [6] J. K. Webb et al., Phys. Rev. Lett. 82, 884 (1999); V. V. Flambaum and E. V. Shuryak, Phys. Rev. D 67, 083507 (2003); 65, 103503 (2002). [7] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985). [8] G. Amoros, J. Bijnens, and P. Talavera, Nucl. Phys. B602, 87 (2001). [9] P. Buettiker, S. Descotes-Genon, and B. Moussallam, Eur. Phys. J. C 33, 409 (2004); S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 48, 553 (2006). [10] J. R. Peláez, Mod. Phys. Lett. A 19, 2879 (2004). [11] V. Bernard, N. Kaiser, and U. G. Meissner, Phys. Rev. D 43, R2757 (1991); Nucl. Phys. B357, 129 (1991); Phys. Rev. D 44, 3698 (1991). [12] A. Gómez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002). [13] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); 67, 2260 (1991); A. Dobado et al., Phys. Lett. B 235, 134 (1990). [14] A. Dobado and J. R. Peláez, Phys. Rev. D 47, 4883 (1993); 56, 3057 (1997). [15] J. A. Oller and E. Oset, Nucl. Phys. A620, 438 (1997); 652, 407(E) (1999). [16] J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. Lett. 80, 3452 (1998); Phys. Rev. D 59, 074001 (1999); 62, 114017 (2000); F. Guerrero and J. A. Oller, Nucl. Phys. B537, 459 (1999); B602, 641(E) (2001). [17] A. Gómez Nicola, J. R. Pelaez, and G. Rios, Phys. Rev. D 77, 056006 (2008). [18] S. D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973); P. Estabrooks and A. D. Martin, Nucl. Phys. B79, 301 (1974); G. Grayer et al., Nucl. Phys. B75, 189 (1974); C. D. Froggatt and J. L. Petersen, Nucl. Phys. B129, 89 (1977); W. Hoogland et al., Nucl. Phys. B126, 109 (1977); M. J. Losty et al., Nucl. Phys. B69, 185 (1974); N. B. Durusoy et al., Phys. Lett. 45B, 517 (1973); P. Estabrooks, R. K. Carnegie, A. D. Martin, W. M. Dunwoodie, T. A. Lasinski, and D. W. G. Leith, Nucl. Phys. B133, 490 (1978); D. Aston et al., Nucl. Phys. B296, 493 (1988); D. Linglin et al., Nucl. Phys. B57, 64 (1973); L. Rosselet et al., Phys. Rev. D 15, 574 (1977); S. Pislak et al. (BNLE865 Collaboration), Phys. Rev. Lett. 87, 221801 (2001); P. Truoel, arXiv:hep-ex/0012012. [19] S. R. Beane et al. (NPLQCD Collaboration), Phys. Rev. D 77, 094507 (2008); 77, 014505 (2008); 74, 114503 (2006); Ph. Boucaud et al. (ETM Collaboration), Comput. Phys. Commun. 179, 695 (2008). [20] R. Kaminski, J. R. Peláez, and F. J. Yndurain, Phys. Rev. D 77, 054015 (2008). [21] P. C. Bruns and U.-G. Meißner, Eur. Phys. J. C 40, 97 (2005). [22] P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989); A. Nyffeler, Z. Phys. C 60, 159 (1993); A. Dobado and J. R. Peláez, Phys. Rev. D 59, 034004 (1998). [23] S. Aoki et al. (CP-PACS Collaboration), Phys. Rev. D 76, 094506 (2007). [24] K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966). [25] I. Caprini, G. Colangelo, and H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006); F. J. Yndurain, R. Garcia-Martin, and J. R. Peláez, Phys. Rev. D 76, 074034 (2007); R. Kaminski, R. Garcia-Martin, P. Grynkiewicz, and J. R. Peláez, Nucl. Phys. B, Proc. Suppl. 186, 318 (2009). [26] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008). [27] D. Black, A. H. Fariborz, F. Sannino, and J. Schechter, Phys. Rev. D 59, 074026 (1999). [28] J. A. Oller, Nucl. Phys. A727, 353 (2003). [29] R. Kaminski, G. Mennessier, and S. Narison, Phys. Lett. B 680, 148 (2009). [30] S. Weinberg, Phys. Rev. 130, 776 (1963); V. Baru, J. Haidenbauer, C. Hanhart, Yu. Kalashnikova, and A. E. Kudryavtsev, Phys. Lett. B 586, 53 (2004). [31] D. Gamermann, J. Nieves, E. Oset, and E. R. Arriola, Phys. Rev. D 81, 014029 (2010).
dspace.entity.typePublication
relation.isAuthorOfPublication70900239-cb8b-49f3-931f-9dc6a8b7d8d5
relation.isAuthorOfPublication.latestForDiscovery70900239-cb8b-49f3-931f-9dc6a8b7d8d5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pelaezsagredo26libre.pdf
Size:
660.5 KB
Format:
Adobe Portable Document Format

Collections