Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

An optimal approach for low-power migraine prediction models in the state-of-the-art wireless monitoring devices

dc.conference.date27-31 Mar 2017
dc.conference.placeLaussane, Suiza
dc.conference.titleDesign, Automation & Test in Europe Conference & Exhibition, 2017
dc.contributor.authorPagán Ortiz, Josué
dc.contributor.authorFallahzadeh, Ramin
dc.contributor.authorGhasemzadeh, Hassan
dc.contributor.authorMoya, Jose M.
dc.contributor.authorRisco Martín, José Luis
dc.contributor.authorAyala Rodrigo, José Luis
dc.date.accessioned2024-01-23T16:16:47Z
dc.date.available2024-01-23T16:16:47Z
dc.date.issued2017
dc.description.abstractWearable monitoring devices for ubiquitous health care are becoming a reality that has to deal with limited battery autonomy. Several researchers focus their efforts in reducing the energy consumption of these motes: from efficient micro-architectures, to on-node data processing techniques. In this paper we focus in the optimization of the energy consumption of monitoring devices for the prediction of symptomatic events in chronic diseases in real time. To do this, we have developed an optimization methodology that incorporates information of several sources of energy consumption: the running code for prediction, and the sensors for data acquisition. As a result of our methodology, we are able to improve the energy consumption of the computing process up to 90% with a minimal impact on accuracy. The proposed optimization methodology can be applied to any prediction modeling scheme to introduce the concept of energy efficiency. In this work we test the framework using Grammatical Evolutionary algorithms in the prediction of chronic migraines.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.statuspub
dc.identifier.citationJ. Pagán, R. Fallahzadeh, H. Ghasemzadeh, J. M. Moya, J. L. Risco-Martín and J. L. Ayala, "An optimal approach for low-power migraine prediction models in the state-of-the-art wireless monitoring devices," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, Switzerland, 2017, pp. 1297-1302, doi: 10.23919/DATE.2017.7927193.
dc.identifier.doi10.23919/date.2017.7927193
dc.identifier.essn1558-1101
dc.identifier.isbn978-3-9815-3709-3
dc.identifier.officialurlhttps://www.doi.org/10.23919/date.2017.7927193
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/document/7927193
dc.identifier.urihttps://hdl.handle.net/20.500.14352/94859
dc.language.isoeng
dc.page.final1302
dc.page.initial1297
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//PI15%2F01976/ES/Monitorización ambulatoria no invasiva de variables biométricas y biofísicas y como método para la predicción de una crisis de migraña/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2015-65277-R/ES/COMPUTACION HETEROGENEA EFICIENTE: DEL PROCESADOR AL DATACENTER/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TEC2012-33892/ES/TECNOLOGIAS HW%2FSW PARA LA EFICIENCIA ENERGETICA EN SISTEMAS DE COMPUTACION DISTRIBUIDOS/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmOptimización matemática
dc.subject.ucmElectrónica (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleAn optimal approach for low-power migraine prediction models in the state-of-the-art wireless monitoring devices
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication2e4c4d42-c8d8-450e-bf6b-28f327b89a44
relation.isAuthorOfPublicationb18c2bd8-52be-4d79-bd8b-dbd8e970d703
relation.isAuthorOfPublicationd73a810d-34c3-440e-8b5f-e2a7b0eb538f
relation.isAuthorOfPublication.latestForDiscovery2e4c4d42-c8d8-450e-bf6b-28f327b89a44

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Low-power_migraine_prediction.pdf
Size:
193.6 KB
Format:
Adobe Portable Document Format