An optimal approach for low-power migraine prediction models in the state-of-the-art wireless monitoring devices
Loading...
Official URL
Full text at PDC
Publication date
2017
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
J. Pagán, R. Fallahzadeh, H. Ghasemzadeh, J. M. Moya, J. L. Risco-Martín and J. L. Ayala, "An optimal approach for low-power migraine prediction models in the state-of-the-art wireless monitoring devices," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, Switzerland, 2017, pp. 1297-1302, doi: 10.23919/DATE.2017.7927193.
Abstract
Wearable monitoring devices for ubiquitous health care are becoming a reality that has to deal with limited battery autonomy. Several researchers focus their efforts in reducing the energy consumption of these motes: from efficient micro-architectures, to on-node data processing techniques. In this paper we focus in the optimization of the energy consumption of monitoring devices for the prediction of symptomatic events in chronic diseases in real time. To do this, we have developed an optimization methodology that incorporates information of several sources of energy consumption: the running code for prediction, and the sensors for data acquisition. As a result of our methodology, we are able to improve the energy consumption of the computing process up to 90% with a minimal impact on accuracy. The proposed optimization methodology can be applied to any prediction modeling scheme to introduce the concept of energy efficiency. In this work we test the framework using Grammatical Evolutionary algorithms in the prediction of chronic migraines.