Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New internal clustering validation measure for contiguous arbitrary shape clusters

dc.contributor.authorRojas-Thomas, Juan Carlos
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-12-10T12:11:31Z
dc.date.available2024-12-10T12:11:31Z
dc.date.issued2021-06-06
dc.description.abstractIn this study a new internal clustering validation index is proposed. It is based on a measure of the uniformity of the data in clusters. It uses the local density of each cluster, in particular, the normalized variability of the density within the clusters to find the ideal partition. The new validity measure allows it to capture the spatial pattern of the data and obtain the right number of clusters in an automatic way. This new approach, unlike the traditional one that usually identifies well-separated compact clouds, works with arbitrary-shape clusters that may be contiguous or even overlapped. The proposed clustering measure has been evaluated on nine artificial data sets, with different cluster distributions and an increasing number of classes, on three highly nonlinear data sets, and on 17 real data sets. It has been compared with nine well-known clustering validation indices with very satisfactory results. This proves that including density in the definition of clustering validation indices may be useful to identify the right partition of arbitrary-shape and different-size clusters.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationRojas‐Thomas, J. C., & Santos, M. (2021). New internal clustering validation measure for contiguous arbitrary‐shape clusters. International Journal of Intelligent Systems, 36(10), 5506-5529.
dc.identifier.doihttps://doi.org/10.1002/int.22521
dc.identifier.officialurlhttps://onlinelibrary.wiley.com/doi/full/10.1002/int.22521
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112314
dc.issue.number10
dc.journal.titleInternational Journal of Intelligent Systems
dc.language.isoeng
dc.page.final5529
dc.page.initial5506
dc.publisherWiley
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordArbitrary‐shape clusters
dc.subject.keywordClustering
dc.subject.keywordDensity
dc.subject.keywordInternal validation index
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleNew internal clustering validation measure for contiguous arbitrary shape clusters
dc.typejournal article
dc.volume.number36
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
clustering_validation.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format

Collections