Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Robust adaptive Lasso in high-dimensional logistic regression with an application to genomic classification of cancer patients

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

Penalized logistic regression is extremely useful for binary classiffication with a large number of covariates (significantly higher than the sample size), having several real life applications, including genomic disease classification. However, the existing methods based on the likelihood based loss function are sensitive to data contamination and other noise and, hence, robust methods are needed for stable and more accurate inference. In this paper, we propose a family of robust estimators for sparse logistic models utilizing the popular density power divergence based loss function and the general adaptively weighted LASSO penalties. We study the local robustness of the proposed estimators through its in uence function and also derive its oracle properties and asymptotic distribution. With extensive empirical illustrations, we clearly demonstrate the significantly improved performance of our proposed estimators over the existing ones with particular gain in robustness. Our proposal is finally applied to analyse four different real datasets for cancer classification, obtaining robust and accurate models, that simultaneously performs gene selection and patient classification.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections