Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Electronic states on a lattice in periodic magnetic fields

dc.contributor.authorGuil Guerrero, Francisco José
dc.date.accessioned2023-06-20T10:59:07Z
dc.date.available2023-06-20T10:59:07Z
dc.date.issued2007-03
dc.description©2007 American Institute of Physics.
dc.description.abstractThe Hamiltonian for an electron in Z^2 , interacting with a perpendicular periodic magnetic field, is shown to be gauge equivalent to a periodic Hamiltonian. The wave function of the system is computed in terms of a ground state of the continuous motion in R2 for the Pauli Hamiltonian. Explicit expressions for the states, in both the Coulomb and Landau gauges, are considered.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33068
dc.identifier.doi10.1063/1.2710199
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.2710199
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51555
dc.issue.number3
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordBloch electrons
dc.subject.keywordFlux phase
dc.subject.keywordModulation
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleElectronic states on a lattice in periodic magnetic fields
dc.typejournal article
dc.volume.number48
dcterms.references1.D. R. Hofstadter, Phys. Rev. B 14, 2239 1976. 2. G. Y. Oh, Phys. Rev. B 60, 1939 1999. 3. P. Fekete and G. Gumbs, J. Phys.: Condens. Matter 11, 5475 1999. 4. M. C. Chang and M. F. Yang, Phys. Rev. B 69, 115108 2004. 5. P. B. Wiegmann and A. V. Zabrodin, Phys. Rev. Lett. 72, 1890 1994. 6. B. A. Dubrovin and S. P. Novikov, Sov. Phys. JETP 52, 511 1980. 7. S. P. Novikov, Sov. Math. Dokl. 23, 298 1981. 8. A. Y. Rom, Phys. Rev. B 55, 11025 1996. 9. Y. A. Kordyukov, Commun. Math. Phys. 253, 371 2005. 10. J. Bruening, V. Geyler, and K. Pankrashkin, Commun. Math. Phys. 269, 87 2007. 11.R. Varnhagen, Nucl. Phys. B: Field Theory Stat. Syst. [FS]443, 501 1995. 12.E. H. Lieb and M. Loss, Duke Math. J. 71, 337 1993. 13.E. H. Lieb, Phys. Rev. Lett. 73, 2158 1994. 14.N. Macris and B. Nachtergaele, J. Stat. Phys. 85, 745 1996. 15.D. Husemöller, Elliptic Curves Springer, Berlin, 1987. 033503-8 Fran
dspace.entity.typePublication
relation.isAuthorOfPublication07b29370-82af-4544-a17f-da10a1ba1805
relation.isAuthorOfPublication.latestForDiscovery07b29370-82af-4544-a17f-da10a1ba1805

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
guilguerrero02libre.pdf
Size:
421.39 KB
Format:
Adobe Portable Document Format

Collections