Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Integration of object detection and semantic segmentation based on convolutional neural networks for navigation and monitoring of cyanobacterial blooms in lentic water scenes

dc.contributor.authorBarrientos-Espillco, Fredy
dc.contributor.authorGómez-Silva, María J.
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorPajares Martínsanz, Gonzalo
dc.date.accessioned2024-07-02T15:05:28Z
dc.date.available2024-07-02T15:05:28Z
dc.date.issued2024-06-15
dc.description.abstractLentic waters, such as lakes, lagoons, reservoirs, and wetlands are characterized by their absence of current. In recent decades, they have been threatened by pollution and scarcity due to various environmental factors. Therefore, they require frequent monitoring to ensure their health and purity, especially to control the proliferation of harmful cyanobacteria (pollutants). Machine Vision Systems (MVS) on board Autonomous Surface Vehicles (ASVs) is a good option for automatic image processing in this context. ASVs must navigate safely, and obstacle detection is essential. In addition, the segmentation of pollutants in water is crucial. We propose an architecture based on convolutional neural networks that integrates both object detection and semantic segmentation. The goal is to simultaneously extract all available global information to detect objects and amorphous textures (cyanobacterial patches and water bodies), considering their variations in size, pose, and appearance. The architecture includes two branches: object detection and semantic segmentation, sharing the same backbone and neck. We evaluate the model on our dataset and the results show that it can holistically understand lentic water scenes with high accuracy, and the integration of the attention mechanism improves its overall performance.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1016/j.asoc.2024.111849
dc.identifier.issn1568-4946
dc.identifier.officialurlhttps://doi.org/10.1016/j.asoc.2024.111849
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105454
dc.journal.titleApplied Soft Computing
dc.language.isoeng
dc.rights.accessRightsopen access
dc.subject.keywordDual-task
dc.subject.keywordObject detection
dc.subject.keywordSemantic segmentation
dc.subject.keywordConvolutional Neural Networks
dc.subject.keywordAutonomous surface vehicles
dc.subject.keywordLentic waters
dc.subject.keywordCyanobacterial blooms
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleIntegration of object detection and semantic segmentation based on convolutional neural networks for navigation and monitoring of cyanobacterial blooms in lentic water scenes
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number163
dspace.entity.typePublication
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublication.latestForDiscovery0acc96fe-6132-45c5-ad71-299c9dcb6682

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1568494624006239-main.pdf
Size:
18.52 MB
Format:
Adobe Portable Document Format

Collections