Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonequilibrium chiral perturbation theory and pion decay functions

dc.contributor.authorGómez Nicola, Ángel
dc.contributor.authorGalán González, V.
dc.date.accessioned2023-06-20T20:06:49Z
dc.date.available2023-06-20T20:06:49Z
dc.date.issued1999-03-11
dc.description© 1999 Elsevier Science B.V. We are grateful to T. Evans and R. Rivers for countless and fruitful discussions, as well as to R.F. Alvarez-Estrada, A. Dobado and A.L. Maroto for providing useful references and comments. A.G.N wishes to thank the Imperial College group for their kind hospitality during his stay there and has received financial support through a postdoctoral fellowship of the Spanish Ministry of Education and CICYT, Spain, project AEN97-1693.
dc.description.abstractWe extend chiral perturbation theory to study a meson gas out of thermal equilibrium. Assuming that the system is initially in equilibrium at T-i < T-c and working within the Schwinger-Keldysh contour technique, we define consistently the time-dependent temporal and spatial pion decay functions, the counterparts of the pion decay constants, and calculate them to next to leading order. The link with curved space-time QFT allows to establish nonequilibrium renormalisation. The short-time behaviour and the applicability of our model to a heavy-ion collision plasma are also discussed in this work.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education
dc.description.sponsorshipCICYT, Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30646
dc.identifier.doi10.1016/S0370-2693(99)00067-2
dc.identifier.issn0370-2693
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0370-2693(99)00067-2
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59584
dc.issue.number3-4
dc.journal.titlePhysics letters B
dc.language.isoeng
dc.page.final298
dc.page.initial288
dc.publisherElsevier science
dc.relation.projectIDAEN97-1693
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordQcd phase-Transition
dc.subject.keywordFinite-temperature
dc.subject.keywordEquilibrium
dc.subject.keywordEvolution
dc.subject.keywordEnergy
dc.subject.keywordField
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleNonequilibrium chiral perturbation theory and pion decay functions
dc.typejournal article
dc.volume.number449
dcterms.references[1] S. Weinberg, Physica A 96 (1979) 327; J. Gasser, H. Leutwyler, Ann. Phys. (NY) 158 (1984) 142; Nucl. Phys. B 250 (1985) 465. [2] A. Dobado, A. Gómez Nicola, A. López-Maroto, J.R. Pelaez, Effective lagrangians for the Standard Model, Springer, 1997, and references therein. [3] F. Wilczek, Int. J. Mod. Phys. 7 (1992) 3911. [4] A. Bochkarev, J. Kapusta, Phys. Rev. D 54 (1996) 4066. [5] J. Gasser, H. Leutwyler, Phys. Lett. B 184 (1987) 83. [6] P. Gerber, H. Leutwyler, Nucl. Phys. B 321 (1989) 387. [7] A. Anselm, Phys. Lett. B 217 (1989) 169; A. Anselm, M. Ryskin, Phys. Lett. B 226 (1991) 482. [8] K. Rajagopal, F. Wilczek, Nucl. Phys. B 399 (1993) 395. [9] D. Boyanowsky, H.J. de Vega, R. Holman, Phys. Rev. D 51 (1995) 734. [10] D. Boyanowsky et al., Phys. Rev. D 56 (1997) 3929. [11] A.J. Gill, R.J. Rivers, Phys. Rev. D 51 (1995) 6949. [12] F. Cooper, Y. Kluger, E. Mottola, J.P. Paz, Phys. Rev. D 51 (1995) 2377; M.A. Lampert, J.F. Dawson, F. Cooper, Phys. Rev. D 54 (1996) 2213. [13] A. Barducci et al., Phys. Lett. B 369 1996 23. [14] R. Baier et al., Phys. Rev. D 56 1997 2548, 4344; M. Le Bellac, H. Mabilat, Z. Phys. C 75 (1997) 137. [15] J. Schwinger, J. Math. Phys. 2 (1961) 407; L.V. Keldysh, Sov. Phys. JETP 20 (1965) 1018. 16] K.C. Chou, Z.B. Sou, B.L. Hao, L. Yu, Phys. Rep. 118 (1985) 1. [17] G. Semenoff, N. Weiss, Phys. Rev. D 31 (1985) 689. [18] D. Boyanowsky, D.S. Lee, A. Singh, Phys. Rev. D 48 (1993) 800. [19] M. Le Bellac, Thermal Field Theory, Cambridge U.P., 1996. [20] A. Gómez Nicola, work in progress. [21] N. Birell, P. Davies, Quantum Fields in Curved Space, Cambridge U.P., 1982. [22] J.F. Donoghue, H. Leutwyler, Z. Phys. C 52 1991 343. [23] R.D. Pisarski, M. Tytgat, Phys. Rev. D 54 (1996) R2989.
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gnicola41libre.pdf
Size:
106.57 KB
Format:
Adobe Portable Document Format

Collections