A nonlinear Fokker-Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma
Loading...
Download
Full text at PDC
Publication date
1998
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Mathematical Society
Citation
Abstract
This work deals with the problem consisting in the equation (1) partial derivative f/partial derivative t = 1/x(2) partial derivative/partial derivative x [x(4)(partial derivative f/partial derivative x + f + f(2))], when x is an element of (0, infinity), t > 0, together with no-flux conditions at x = 0 and x = +infinity, i.e. (2) x(4)( partial derivative f/partial derivative x + f + f(2))=0 as x --> 0 or x --> +infinity. Such a problem arises as a kinetic approximation to describe the evolution of the radiation distribution f(x,t) in a homogeneous plasma when radiation interacts with matter via Compton scattering. We shall prove that there exist solutions of (1), (2) which develop singularities near x = 0 in a finite time, regardless of how small the initial number of photons N(0) = integral(0)(+infinity) x(2) f(x, 0)dx is. The nature of such singularities is then analyzed in detail. In particular, we show that the flux condition (2) is lost at x = 0 when the singularity unfolds. The corresponding blow-up pattern is shown to be asymptotically of a shock wave type. In rescaled variables, it consists in an imploding travelling wave solution of the Burgers equation near x = 0, that matches a suitable diffusive profile away from the shock. Finally, we also show that, on replacing (2) near x = 0 as determined by the manner of blow-up, such solutions can be continued for all times after the onset of the singularity.