Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A nonlinear Fokker-Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma

dc.contributor.authorEscobedo, M.
dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T17:01:44Z
dc.date.available2023-06-20T17:01:44Z
dc.date.issued1998-10
dc.description.abstractThis work deals with the problem consisting in the equation (1) partial derivative f/partial derivative t = 1/x(2) partial derivative/partial derivative x [x(4)(partial derivative f/partial derivative x + f + f(2))], when x is an element of (0, infinity), t > 0, together with no-flux conditions at x = 0 and x = +infinity, i.e. (2) x(4)( partial derivative f/partial derivative x + f + f(2))=0 as x --> 0 or x --> +infinity. Such a problem arises as a kinetic approximation to describe the evolution of the radiation distribution f(x,t) in a homogeneous plasma when radiation interacts with matter via Compton scattering. We shall prove that there exist solutions of (1), (2) which develop singularities near x = 0 in a finite time, regardless of how small the initial number of photons N(0) = integral(0)(+infinity) x(2) f(x, 0)dx is. The nature of such singularities is then analyzed in detail. In particular, we show that the flux condition (2) is lost at x = 0 when the singularity unfolds. The corresponding blow-up pattern is shown to be asymptotically of a shock wave type. In rescaled variables, it consists in an imploding travelling wave solution of the Burgers equation near x = 0, that matches a suitable diffusive profile away from the shock. Finally, we also show that, on replacing (2) near x = 0 as determined by the manner of blow-up, such solutions can be continued for all times after the onset of the singularity.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.sponsorshipEEC
dc.description.sponsorshipDGICYT
dc.description.sponsorshipEEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16863
dc.identifier.doi10.1090/S0002-9947-98-02279-X
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/1998-350-10/S0002-9947-98-02279-X/S0002-9947-98-02279-X.pdf
dc.identifier.relatedurlhttp://www.ams.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57651
dc.issue.number10
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final3901
dc.page.initial3837
dc.publisherAmerican Mathematical Society
dc.relation.projectIDGrant PB93-1203
dc.relation.projectIDContract ERB 4061 PL 95-0545
dc.relation.projectIDGrant PB93-0438
dc.relation.projectIDContract CHRX-CT-0413
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.keywordBlow-up
dc.subject.keywordBose-Einstein distribution
dc.subject.keywordflux condition
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleA nonlinear Fokker-Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma
dc.typejournal article
dc.volume.number350
dcterms.referencesJ. Aguirre and M. Escobedo, On the blow-up of solutions of a convective reaction-diffusion equation, Proc. Royal Soc. Edinburgh 123A, (1993), pp. 433-460. D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Normale Sup. Pisa (3) 22 (1968), pp. 607-694. R. E. Caflisch and C. D. Levermore, Equilibrium for radiation in a homogeneous plasma, Phys. Fluids 29 (1986), pp. 748-752. M. A. Herrero and J. J. L. Velazquez, Blow-up behaviour of one-dimensional semilinear parabolic problems, Ann. Inst. Henri Poincaré, 10 (1993), pp. 131-189. M. A. Herrero and J. J. L. Velazquez, Generic behaviour of one-dimensional blow-up patterns, Ann. Scuola Normale Sup. Pisa (4) 19 (1992), pp. 381-450. M. A. Herrero and J. J. L. Velazquez, On the melting of ice balls, SIAM J. Math. Analysis 28 (1997), 1-32. A. S. Kompaneets, The establishment of thermal equilibrium between quanta and electrons, Soviet Physics JETP, 4,(1957), pp. 730-737. O. Kavian and C. D. Levermore, On the Kompaneets Equation, a singular semi-linear parabolic equation with blow-up. In preparation. R. Natalini and A. Tesei, Blow-up of solutions for a class of balance laws, Comm. Part. Diff. Eq., 19 (1994), pp. 417-453. J. J. L. Velazquez, Classiffication of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc. 338 (1993), pp. 441-464. J. J. L. Velazquez, Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow, Ann. Scuola Normale Sup. Pisa (4) 21 (1994), pp. 595-628.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero27.pdf
Size:
746.27 KB
Format:
Adobe Portable Document Format

Collections