A nonlinear Fokker-Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma
dc.contributor.author | Escobedo, M. | |
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T17:01:44Z | |
dc.date.available | 2023-06-20T17:01:44Z | |
dc.date.issued | 1998-10 | |
dc.description.abstract | This work deals with the problem consisting in the equation (1) partial derivative f/partial derivative t = 1/x(2) partial derivative/partial derivative x [x(4)(partial derivative f/partial derivative x + f + f(2))], when x is an element of (0, infinity), t > 0, together with no-flux conditions at x = 0 and x = +infinity, i.e. (2) x(4)( partial derivative f/partial derivative x + f + f(2))=0 as x --> 0 or x --> +infinity. Such a problem arises as a kinetic approximation to describe the evolution of the radiation distribution f(x,t) in a homogeneous plasma when radiation interacts with matter via Compton scattering. We shall prove that there exist solutions of (1), (2) which develop singularities near x = 0 in a finite time, regardless of how small the initial number of photons N(0) = integral(0)(+infinity) x(2) f(x, 0)dx is. The nature of such singularities is then analyzed in detail. In particular, we show that the flux condition (2) is lost at x = 0 when the singularity unfolds. The corresponding blow-up pattern is shown to be asymptotically of a shock wave type. In rescaled variables, it consists in an imploding travelling wave solution of the Burgers equation near x = 0, that matches a suitable diffusive profile away from the shock. Finally, we also show that, on replacing (2) near x = 0 as determined by the manner of blow-up, such solutions can be continued for all times after the onset of the singularity. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.sponsorship | EEC | |
dc.description.sponsorship | DGICYT | |
dc.description.sponsorship | EEC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16863 | |
dc.identifier.doi | 10.1090/S0002-9947-98-02279-X | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.officialurl | http://www.ams.org/journals/tran/1998-350-10/S0002-9947-98-02279-X/S0002-9947-98-02279-X.pdf | |
dc.identifier.relatedurl | http://www.ams.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57651 | |
dc.issue.number | 10 | |
dc.journal.title | Transactions of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 3901 | |
dc.page.initial | 3837 | |
dc.publisher | American Mathematical Society | |
dc.relation.projectID | Grant PB93-1203 | |
dc.relation.projectID | Contract ERB 4061 PL 95-0545 | |
dc.relation.projectID | Grant PB93-0438 | |
dc.relation.projectID | Contract CHRX-CT-0413 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.956.4 | |
dc.subject.keyword | Blow-up | |
dc.subject.keyword | Bose-Einstein distribution | |
dc.subject.keyword | flux condition | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | A nonlinear Fokker-Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma | |
dc.type | journal article | |
dc.volume.number | 350 | |
dcterms.references | J. Aguirre and M. Escobedo, On the blow-up of solutions of a convective reaction-diffusion equation, Proc. Royal Soc. Edinburgh 123A, (1993), pp. 433-460. D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Normale Sup. Pisa (3) 22 (1968), pp. 607-694. R. E. Caflisch and C. D. Levermore, Equilibrium for radiation in a homogeneous plasma, Phys. Fluids 29 (1986), pp. 748-752. M. A. Herrero and J. J. L. Velazquez, Blow-up behaviour of one-dimensional semilinear parabolic problems, Ann. Inst. Henri Poincaré, 10 (1993), pp. 131-189. M. A. Herrero and J. J. L. Velazquez, Generic behaviour of one-dimensional blow-up patterns, Ann. Scuola Normale Sup. Pisa (4) 19 (1992), pp. 381-450. M. A. Herrero and J. J. L. Velazquez, On the melting of ice balls, SIAM J. Math. Analysis 28 (1997), 1-32. A. S. Kompaneets, The establishment of thermal equilibrium between quanta and electrons, Soviet Physics JETP, 4,(1957), pp. 730-737. O. Kavian and C. D. Levermore, On the Kompaneets Equation, a singular semi-linear parabolic equation with blow-up. In preparation. R. Natalini and A. Tesei, Blow-up of solutions for a class of balance laws, Comm. Part. Diff. Eq., 19 (1994), pp. 417-453. J. J. L. Velazquez, Classiffication of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc. 338 (1993), pp. 441-464. J. J. L. Velazquez, Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow, Ann. Scuola Normale Sup. Pisa (4) 21 (1994), pp. 595-628. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1