Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Poliedros de Dirichlet de 3-variedades cónicas y sus deformaciones

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2003

Defense date

1998

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid, Servicio de Publicaciones
Citations
Google Scholar

Citation

Abstract

En esta tesis se estudia la construcción de 3-variedades cónicas mediante sus poliedros de Dirichlet. Los principales resultados obtenidos son los siguientes: Se da una demostración completa de la existencia de poliedros de Dirichlet para variedades cónicas (hiperbólicas, esféricas o euclídeas) compactas con singularidad un enlace y ángulos cónicos menores que 2 . Se describe de modo general la variación de los poliedros de Dirichlet cuando se deforma una estructura cónica dada. Como consecuencia, se obtiene un algoritmo general para construir familias continuas de estructuras cónicas (con ángulos menores que 2 ) en una 3-variedad cerrada, una vez conocidas las correspondientes representaciones de holonomía, y conocido un poliedro de Dirichlet para un valor concreto del ángulo cónico. Se aplica este método a varios ejemplos particulares, que permiten visualizar degeneraciones de estructuras hiperbólicas o esféricas cónicas en otras estructuras geométricas de distinto tipo (Sol o Nil). Se observa la aparición, de manera natural, de nuevas estructuras geométricas con holonomía semi-riemanniana, lo cual lleva a demostrar una fórmula de Schafli para el volumen de símplices en hipercuádricas semi-riemannianas

Research Projects

Organizational Units

Journal Issue

Description

Tesis de la Universidad Complutense de Madrid, Facultad Matemáticas, Departamento de Geometría y Topología, leída el 22-05-1998

UCM subjects

Unesco subjects

Keywords

Collections