Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On convex polyhedra as regular images of R(n)

dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorGamboa Mutuberria, José Manuel
dc.contributor.authorUeno, Carlos
dc.date.accessioned2023-06-20T00:11:09Z
dc.date.available2023-06-20T00:11:09Z
dc.date.issued2011
dc.description.abstractWe show that convex polyhedra in R(n) and their interiors are images of regular maps R(n) -> R(n). As a main ingredient in the proof, given an n-dimensional, bounded, convex polyhedron K subset of R(n) and a point p is an element of R(n) \ K, we construct a semialgebraic partition {A, B, T} of the boundary partial derivative K of K determined by p, and compatible with the interiors of the faces of K, such that A and B are semialgebraically homeomorphic to an (n - 1)-dimensional open ball and J is semialgebraically homeomorphic to an (n - 2)-dimensional sphere. Finally, we also prove that closed balls in R n and their interiors are images of regular maps R(n) -> R(n).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGAAR
dc.description.sponsorshipSantander Complutense
dc.description.sponsorshipGAAR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15062
dc.identifier.doi10.1112/plms/pdr015
dc.identifier.issn0024-6115
dc.identifier.officialurlhttp://plms.oxfordjournals.org/content/103/5/847.full.pdf+html
dc.identifier.relatedurlhttp://www.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42151
dc.journal.titleProceedings of the London Mathematical Society
dc.language.isoeng
dc.page.final878
dc.page.initial847
dc.publisherOxford University Press (OUP)
dc.relation.projectIDMTM2008-00272.
dc.relation.projectIDPR34/07-15813
dc.relation.projectIDUCM 910444.
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn convex polyhedra as regular images of R(n)
dc.typejournal article
dc.volume.number103
dcterms.referencesM. Berger, Geometry. I, universitext (Springer,Berlin,1987). M. Berger, Geometry. II, universitext Springer,Berlin,1987). J. Bochnak, M. Coste and M. F. Roy,Real algebraic geometry, Ergebnisse der Mathematik 36Springer,Berlin,1998). M. Brown, ‘A proof of the generalized Schoenflies theorem’, Bull. Amer. Math. Soc. 66 (1960) 74–76. J. F. Fernando and J. M. Gamboa, ‘Polynomial images of Rn’, J. Pure Appl. Algebra 179 (2003) 241–254. J. F. Fernando and J. M. Gamboa, ‘Polynomial and regular images of Rn’, Israel J. Math. 153 (2006)61–92. G. Stengle, ‘A Nullstellensatz and a Positivstellensatz in semialgebraic geometry’, Math. Ann. 207 (1974)87–97. 8. C. Ueno, ‘On convex polygons and their complementaries as images of regular and polynomial maps of R2’,Preprint, RAAG, Fuerteventura: 2009.
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01.pdf
Size:
419.38 KB
Format:
Adobe Portable Document Format

Collections