On convex polyhedra as regular images of R(n)
Loading...
Download
Full text at PDC
Publication date
2011
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press (OUP)
Citation
Abstract
We show that convex polyhedra in R(n) and their interiors are images of regular maps R(n) -> R(n). As a main ingredient in the proof, given an n-dimensional, bounded, convex polyhedron K subset of R(n) and a point p is an element of R(n) \ K, we construct a semialgebraic partition {A, B, T} of the boundary partial derivative K of K determined by p, and compatible with the interiors of the faces of K, such that A and B are semialgebraically homeomorphic to an (n - 1)-dimensional open ball and J is semialgebraically homeomorphic to an (n - 2)-dimensional sphere. Finally, we also prove that closed balls in R n and their interiors are images of regular maps R(n) -> R(n).