Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On convex polyhedra as regular images of R(n)

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press (OUP)
Citations
Google Scholar

Citation

Abstract

We show that convex polyhedra in R(n) and their interiors are images of regular maps R(n) -> R(n). As a main ingredient in the proof, given an n-dimensional, bounded, convex polyhedron K subset of R(n) and a point p is an element of R(n) \ K, we construct a semialgebraic partition {A, B, T} of the boundary partial derivative K of K determined by p, and compatible with the interiors of the faces of K, such that A and B are semialgebraically homeomorphic to an (n - 1)-dimensional open ball and J is semialgebraically homeomorphic to an (n - 2)-dimensional sphere. Finally, we also prove that closed balls in R n and their interiors are images of regular maps R(n) -> R(n).

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections