Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The norm of the Riemann-Liouville operator on L-p[0,1]: A probabilistic approach

Loading...
Thumbnail Image

Full text at PDC

Publication date

2007

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

London Mathematical Society
Citations
Google Scholar

Citation

Adell, J. A. & Gallardo Gutiérrez, E. A. «The Norm of the Riemann-Liouville Operator on L p [0,1]: A Probabilistic Approach». Bulletin of the London Mathematical Society, vol. 39, n.o 4, agosto de 2007, pp. 565-74. DOI.org (Crossref), https://doi.org/10.1112/blms/bdm041.

Abstract

We obtain explicit lower and upper bounds for the norm of the Riemann-Liouville operator V-s on L-p[0, 1] which are asymptotically sharp, thus completing previous results by Eveson. Similar statements are shown with respect to the norms parallel to V-s f parallel to(p), whenever f satisfies certain smoothness properties. It turns out that the correct rate of convergence of parallel to V-s f parallel to(p) as s -> infinity depends both on the infimum of the support of f and on the degree of smoothness of f. We use a probabilistic approach which allows us to give unified proofs.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections