Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optimization of a Microfluidic Mixer for Studying Protein Folding Kinetics

Loading...
Thumbnail Image

Full text at PDC

Publication date

2006

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical society
Citations
Google Scholar

Citation

Abstract

We have applied an optimization method in conjunction with numerical simulations to minimize the mixing time of a microfluidic mixer developed for protein folding studies. The optimization method uses a semideterministic algorithm to find the global minimum of the mixing time by varying the mixer geometry and flow conditions. We describe the minimization problem and constraints and give a brief overview of the optimization algorithm. We present results of the optimization, including the optimized geometry and parameter sensitivities, and we demonstrate the improvement in mixing performance with experiments using microfabricated mixers. The dyequenchin experiments of the original and optimized mixer designs show respective mixing times of 7 and 4 µs, a 40% eduction. The new design also provides more uniform mixing across streamlines that enter the mixer. The optimized mixer is the fastest reported continuous flow mixer for protein folding.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections