Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Elliptic solutions in the Neumann-Rosochatius system with mixed flux

dc.contributor.authorHernández Redondo, Rafael
dc.contributor.authorNieto, Juan Miguel
dc.date.accessioned2023-06-18T06:46:32Z
dc.date.available2023-06-18T06:46:32Z
dc.date.issued2015-06-15
dc.description© 2015 American Physical Society. The work of R. H. is supported by MICINN through a Ramon y Cajal contract and Grant No. FPA2011-24568 and by BSCH-UCM through Grant No. GR58/08-910770. J. M. N. wishes to thank the Instituto de Fisica Teorica UAM-CSIC for kind hospitality during this work.
dc.description.abstractClosed strings spinning in AdS_3 x S^3 x T^4 with mixed Ramond-Ramond and Neveu-Schwarz-NeveuSchwarz three-form fluxes are described by a deformation of the one-dimensional Neumann-Rosochatius integrable system. In this articlewe find general solutions to this systemthat can be expressed in terms of elliptic functions. We consider closed strings rotating either in S^3 with two different angularmomenta or in AdS_3 with one spin. To find the solutions, we will need to extend the Uhlenbeck integrals of motion of the Neumann-Rosochatius system to include the contribution from the flux. In the limit of pure Neveu-Schwarz-NeveuSchwarz flux, where the problem can be described by a supersymmetricWess-Zumino-Witten model, we find exact expressions for the classical energy in terms of the spin and the angular momenta of the spinning string.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MCINN), España
dc.description.sponsorshipBanco Santander Central Hispamo (BSCH)
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.sponsorshipSubprograma Ramón y Cajal (RYC)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32969
dc.identifier.doi10.1103/PhysRevD.91.126006
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.91.126006
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24135
dc.issue.number12
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.page.final126006_11
dc.page.initial126006_1
dc.publisherAmerican Physical Society
dc.relation.projectIDGR58/08-910770
dc.relation.projectIDFPA2011-24568
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordADS(3) X S-3
dc.subject.keyword3-Form flux
dc.subject.keywordS-Matrix
dc.subject.keywordSpinning strings
dc.subject.keywordT-4
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleElliptic solutions in the Neumann-Rosochatius system with mixed flux
dc.typejournal article
dc.volume.number91
dcterms.references[1] A. Babichenko, B. Stefański, Jr., and K. Zarembo, Integrability and the AdS3=CFT2 correspondence, J. High Energy Phys. 03 (2010) 058. [2] K. Zarembo, Strings on semisymmetric superspaces, J. High Energy Phys. 05 (2010) 002; , Algebraic Curves for Integrable String Backgrounds, arXiv:1005.1342. [3] O. O. Sax and B. Stefański, Jr., Integrability, spin-chains and the AdS3=CFT2 correspondence, J. High Energy Phys. 08 (2011) 029. [4] N. Rughoonauth, P. Sundin, and L. Wulff, Near BMN dynamics of the AdS3 × S3 × S3 × S1 superstring, J. High Energy Phys. 07 (2012) 159. [5] O. O. Sax, B. Stefański, Jr., and A. Torrielli, On the massless modes of the AdS3=CFT2 integrable systems, J. High Energy Phys. 03 (2013) 109. [6] C. Ahn and D. Bombardelli, Exact S-matrices for AdS3=CFT2, Int. J. Mod. Phys. A 28, 1350168 (2013); R. Borsato, O. O. Sax, and A. Sfondrini, A dynamic suð1j1Þ2 S-matrix for AdS3=CFT2, J. High Energy Phys. 04 (2013) 113; All-loop Bethe ansatz equations for AdS3=CFT2, J. High Energy Phys. 04 (2013) 116; R. Borsato, O. O. Sax, A. Sfondrini, B. Stefański, Jr., and A. Torrielli, The all-loop integrable spin-chain for strings on AdS3 × S3 × T4: the massive sector, J. High Energy Phys. 08 (2013) 043; R. Borsato, O. O. Sax, A. Sfondrini, and B. Stefański, Jr., All-loop worldsheet S matrix for AdS3 × S3 × T4, Phys. Rev. Lett. 113, 131601 (2014); R. Borsato, O. O. Sax, A. Sfondrini, and B. Stefański, Jr., The complete AdS3 × S3 × T4 worldsheet S-matrix, J. High Energy Phys. 10 (2014) 66. [7] M. Beccaria, F. Levkovich-Maslyuk, G. Macorini, and A. A. Tseytlin, Quantum corrections to spinning superstrings in AdS3 × S3 × M4: determining the dressing phase, J. High Energy Phys. 04 (2013) 006; M. Beccaria and G. Macorini, Quantum corrections to short folded superstring in AdS3 × S3 × M4, J. High Energy Phys. 03 (2013) 040; R. Borsato, O. O. Sax, A. Sfondrini, B. Stefański, Jr., and A. Torrielli, Dressing phases of AdS3=CFT2, Phys. Rev. D 88, 066004 (2013); M. C. Abbott, The AdS3 × S3 × S3 × S1 Hernández-López phases: a semiclassical derivation, J. Phys. A 46, 445401 (2013); M. C. Abbott and I. Aniceto, Macroscopic (and Microscopic) Massless Modes, Nucl. Phys. B894, 75 (2015); An improved AFS phase for AdS3 string integrability, Phys. Lett. B 743, 61 (2015). [8] P. Sundin and L. Wulff, Worldsheet scattering in AdS3=CFT2, J. High Energy Phys. 07 (2013) 007. [9] T. Lloyd and B. Stefański, Jr., AdS3=CFT2, finite-gap equations and massless modes, J. High Energy Phys. 04 (2014) 179. [10] P. Sundin, Worldsheet two- and four-point functions at one loop in AdS3=CFT2, Phys. Lett. B 733, 134 (2014). [11] A. Sfondrini, Towards integrability for AdS3=CFT2, J. Phys. A 48, 023001 (2015). [12] A. Cagnazzo and K. Zarembo, B-field in AdS3=CFT2 Correspondence and Integrability, J. High Energy Phys. 11 (2012) 133; 04 (2013) 003. [13] B. Hoare and A. A. Tseytlin, On string theory on AdS3 × S3 × T4 with mixed 3-form flux: Tree-level S-matrix, Nucl. Phys. B873, 682 (2013); Massive S-matrix of AdS3 × S3 × T4 superstring theory with mixed 3-form flux, Nucl. Phys. B873, 395 (2013). [14] B. Hoare, A. Stepanchuk, and A. A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS3 × S3 × T4 with mixed flux, Nucl. Phys. B879, 318 (2014). [15] C. Ahn and P. Bozhilov, String solutions in AdS3 × S3 × T4 with NS-NS B-field, Phys. Rev. D 90, 066010 (2014). [16] J. R. David and A. Sadhukhan, Spinning strings and minimal surfaces in AdS3 with mixed 3-form fluxes, J. High Energy Phys. 10 (2014) 49. [17] A. Banerjee, K. L. Panigrahi, and P. M. Pradhan, “Spiky strings on AdS3 × S3 with NS-NS flux, Phys. Rev. D 90, 106006 (2014). [18] A. Babichenko, A. Dekel, and O. O. Sax, Finite-gap equations for strings on AdS3 × S3 × T4 with mixed 3-form flux, J. High Energy Phys. 11 (2014) 122. [19] L. Bianchi and B. Hoare, AdS3 × S3 × M4 string S-matrices from unitarity cuts, J. High Energy Phys. 08 (2014) 097. [20] R. Roiban, P. Sundin, A. Tseytlin, and L. Wulff, The one-loop worldsheet S-matrix for the AdSn × Sn × T10−2n superstring, J. High Energy Phys. 08 (2014) 160. [21] T. Lloyd, O. O. Sax, A. Sfondrini, and B. Stefański, Jr., The complete worldsheet S matrix of superstrings on AdS3 × S3 × T4 with mixed three-form flux, Nucl. Phys. B891, 570 (2015). [22] P. Sundin and L. Wulff, One- and two-loop checks for the AdS3 × S3 × T4 superstring with mixed flux, J. Phys. A 48, 105402 (2015). [23] A. Stepanchuk, String theory in AdS3 × S3 × T4 with mixed flux: semiclassical and 1-loop phase in the S-matrix, J. Phys. A 48, 195401 (2015). [24] G. Arutyunov, S. Frolov, J. Russo, and A. A. Tseytlin, Spinning strings in AdS5 × S5 and integrable systems, Nucl. Phys. B671, 3 (2003); G. Arutyunov, J. Russo, and A. A. Tseytlin, Spinning strings in AdS5 × S5: New integrable system relations, Phys. Rev. D 69, 086009 (2004). [25] R. Hernández and J. M. Nieto, “Spinning strings in AdS3 × S3 with NS-NS flux, Nucl. Phys. B888, 236 (2014). [26] K. Uhlenbeck, Equivariant harmonic maps into spheres, Lect. Notes Math. 949, 146 (1982). [27] O. Babelon and M. Talon, Separation of variables for the classical and quantum Neumann model, Nucl. Phys. B379, 321 (1992). [28] F. Delduc, M. Magro, and B. Vicedo, An Integrable Deformation of the AdS5 × S5 Superstring Action, Phys. Rev. Lett. 112, 051601 (2014). [29] G. Arutyunov and D. Medina-Rincón, Deformed Neumann model from spinning strings on ðAdS5 × S5Þ η, J. High Energy Phys. 10 (2014) 50; T. Kameyama and K. Yoshida, “A new coordinate system for q-deformed AdS5 × S5 and classical string solutions, J. Phys. A 48, 075401 (2015).
dspace.entity.typePublication
relation.isAuthorOfPublicationc904cec6-4e4a-45e1-a8a5-027c9abc2127
relation.isAuthorOfPublication.latestForDiscoveryc904cec6-4e4a-45e1-a8a5-027c9abc2127

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HernándezRedondoLIBRE34.pdf
Size:
188.98 KB
Format:
Adobe Portable Document Format

Collections