Vectorial Darboux transformations for the Kadomtsev-Petviashvili hierarchy
Loading...
Download
Official URL
Full text at PDC
Publication date
1999
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Abstract
We consider the vectorial approach to the binary Darboux transformations for the Kadomtsev-Petviashvili hierarchy in its Zakharov-Shabat formulation. We obtain explicit formulae for the Darboux transformed potentials in terms of Grammian type determinants. We also study the n-th Gel'fand-Dickey hierarchy introducing spectral operators and obtaining similar results. We reduce the above-mentioned results to the Kadomtsev-Petviashvili I and II real forms, obtaining corresponding vectorial Darboux transformations. In particular for the Kadomtsev-Petviashvili I hierarchy, we get the line soliton, the lump solution, and the Johnson-Thompson lump, and the corresponding determinant formulae for the nonlinear superposition of several of them. For Kadomtsev-Petviashvili II apart from the line solitons, we get singular rational solutions with its singularity set describing the motion of strings in the plane. We also consider the I and II real forms for the Gel'fand-Dickey hierarchies obtaining the vectorial Darboux transformation in both cases.
Description
©Springer.