Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Vectorial Darboux transformations for the Kadomtsev-Petviashvili hierarchy

dc.contributor.authorLiu, Q. P.
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-20T20:09:10Z
dc.date.available2023-06-20T20:09:10Z
dc.date.issued1999-03
dc.description©Springer.
dc.description.abstractWe consider the vectorial approach to the binary Darboux transformations for the Kadomtsev-Petviashvili hierarchy in its Zakharov-Shabat formulation. We obtain explicit formulae for the Darboux transformed potentials in terms of Grammian type determinants. We also study the n-th Gel'fand-Dickey hierarchy introducing spectral operators and obtaining similar results. We reduce the above-mentioned results to the Kadomtsev-Petviashvili I and II real forms, obtaining corresponding vectorial Darboux transformations. In particular for the Kadomtsev-Petviashvili I hierarchy, we get the line soliton, the lump solution, and the Johnson-Thompson lump, and the corresponding determinant formulae for the nonlinear superposition of several of them. For Kadomtsev-Petviashvili II apart from the line solitons, we get singular rational solutions with its singularity set describing the motion of strings in the plane. We also consider the I and II real forms for the Gel'fand-Dickey hierarchies obtaining the vectorial Darboux transformation in both cases.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32483
dc.identifier.doi10.1007/s003329900070
dc.identifier.issn0938-8974
dc.identifier.officialurlhttp://dx.doi.org/10.1007/s003329900070
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.relatedurlhttp://arxiv.org/abs/solv-int/9705012
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59691
dc.issue.number2
dc.journal.titleJournal of nonlinear science
dc.language.isoeng
dc.page.final232
dc.page.initial213
dc.publisherSpringer
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordTime-dependent schrodinger
dc.subject.keywordInverse scattering transform
dc.subject.keywordRational solutions
dc.subject.keywordDavey-stewartson
dc.subject.keywordGauge transformations
dc.subject.keywordJacobian varieties
dc.subject.keywordSoliton-equations
dc.subject.keywordKp hierarchy
dc.subject.keywordEvolution
dc.subject.keywordSystems
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleVectorial Darboux transformations for the Kadomtsev-Petviashvili hierarchy
dc.typejournal article
dc.volume.number9
dcterms.references[1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press (1991). [2] M. J. Ablowitz and J. Satsuma, J. Math. Phys. 19 (1978) 2180. [3] M. J. Ablowitz and H. Segur, J. Fluid Mech. 92 (1979) 691. [4] M. J. Ablowitz, D. BarYaacov and A. S. Fokas, Stud. Appl. Math 69 (1983) 135. [5] M. J. Ablowitz and J. Villarroel, Phys. Rev. Lett. 78 (1997) 570. [6] E. Arbarello and C. de Concini, Ann. Math. 120 (1984) 119. M. Mulase, Proc. Japan Acad. Ser. A59 285, J. Diff. Geom. 19 (1984) 403. T. Shiota, Inven. Math. 83 (1986) 333. [7] V. L. Arkadiev, A. K. Pogrebkov and M. C. Polivanov, Inverse Problems 5, (1989) L1. [8] C. Athorne and J. J. C. Nimmo, Inverse Problems 7 (1991) 809. [9] E. Brezin and V. Kazakov, Phys. Lett. 236B (1990) 144. M. Douglas and M. Shenker, Nucl. Phys. B335 (1990) 685. D. Gross and A. Migdal, Phys. Rev. Lett. 64 (1990) 127. [10] L.-L. Chau, J. C. Shaw and H. C. Yen, Commun. Math. Phys. 149 (1992) 263. [11] V. S. Dryuma, Sov. Phys. JETP Lett. 19 (1974) 381. [12] A. S. Fokas and M. J. Ablowitz, Stud. Appl. Math. 69 (1983) 211. [13] A. S. Fokas and L.-Y. Sung, Inv. Prob. 8 (1992) 673. [14] A. S. Fokas and V. E. Zakharov, J. Nonlin. Sci. 2 (1992) 109. [15] I. M. Gel’fand, Lectures on Linear Algebra, Dover (1961). [16] I. M. Gel’fand and L. A. Dikii, Func. Anal. Appl. 10 (1976) 259. [17] G. Darboux, C. R. Acad. Sci. Paris 94 (1882) 1456. [18] L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific (1991). E. Date, M. Kashiwara, M. Jimbo and T. Miwa, in Non-linear Integrable Systems —Classical Theory and Quantum Theory M. Jimbo and T. Miwa (eds.), p39, World Scientific (1983). M. Mulase, in Perspectives in Mathematical Physics, R. Penner and S. -T. Yau (eds.), p157, International Press Company (1994). [19] R. S. Johnson and S. Thompson, Phys. Lett. 66A (1978) 279. [20] B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl. 15 (1970) 539. [21] B. G. Konopelchenko, Solitons in Multidimensions, World Scientific (1993). [22] D. Levi, Inverse Problems 4 (1988) 165. [23] S. V. Manakov, Physica 3D (1981) 420. A. S. Fokas and M. J. Ablowitz, Phys. Lett. A94 (1983) 67. M. Boiti, J. J.-P. Leon and F. Pempinelli, Phys. Lett. A141 (1989) 101. [24] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its and V. B. Matveev, Phys. Lett. 63A (1977) 205. [25] V. B. Matveev, Lett. Math. Phys. 3 (1979) 213. [26] V. B. Matveev, Lett. Math. Phys. 3 (1979) 503. [27] V. B. Matveev and M. A. Salle, in Some Topics in Inverse Problems, ed. P. C. Sabatier, World Scientific (1988), pp 182. [28] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag (1991). [29] S. Miyake, Y. Ohta and J. Satsuma, J. Phys. Soc. Japan 59 (1990) 48. [30] A. Nakamura, J. Phys. Soc. Japan 58 (1989) 412. [31] J. J. C. Nimmo, in Nonlinear Evolution Equations and Dynamical Systems , V. G. Makhankov, A. R. Bishop and D. D. Holm (eds.), p168, World Scientific (1995). [32] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Transform Method, Plenum Press (1984). [33] W. Oevel, Physica A195 (1993) 533. [34] W. Oevel and C. Rogers, Rev. Math. Phys. 5 (1993) 299. [35] W. Oevel and W. Schief, in Applications of Analytic and Geometrical Methods to Nonlinear Differential Equations, P. A. Clarkson (ed.), p193, Kluwer Academic Publisher (1993). [36] D. Pelinovsky, J. Math. Phys. 35 (1994) 5820. [37] J. Satsuma and M. J. Ablowitz, J. Math. Phys. 20 (1979) 1496. [38] F. Schottky, Angew. Math. 102 (1888) 304. [39] T. Takebe, Int. J. Mod. Phys. A7, Suppl. 1B (1992) 923. [40] E. Witten, Surv. Diff. Geom. 1 (1991) 243. M. Kontsevich, Commun. Math. Phys. 147 (1992) 1. [41] V. E. Zakharov and A. B. Shabat, Func. Anal. Appl. 8 (1974) 226.
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas32preprint.pdf
Size:
208.99 KB
Format:
Adobe Portable Document Format

Collections