Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Electrical properties of high-pressure reactive sputtered thin hafnium oxide high-k gate dielectrics

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.date.accessioned2023-06-20T10:43:59Z
dc.date.available2023-06-20T10:43:59Z
dc.date.issued2007-12
dc.description© 2007 IOP Publishing Ltd. The study was partially supported by the local government (Junta de Castilla y León) under Grant No VA018A06 and by the Spanish TEC2005 under Grant No 05101/MIC. The authors acknowledge CAI de Técnicas Físicas, CAI de Espectroscopía y Espectrometría and CAI de Microscopía y Citometría of the Universidad Complutense de Madrid for technical support. This work was made possible thanks to the AP2003-4434-FPU grant of the SpanishMEC and the contract TEC 2004-1237/MIC of the Spanish MCYT.
dc.description.abstractThin films of hafnium oxide have been deposited by the high-pressure reactive sputtering (HPRS) system. In this growth system the deposition pressure is around 1 mbar, three orders of magnitude higher than in the conventional ones, assuring that both reflected and sputtered particles reach the substrate with a low energy. The amorphous or polycrystalline structure is modified by adjusting the ratio of oxygen to argon of the sputtering gas. The electrical characteristics of both polycrystalline and amorphous films are compared. In all cases, the leakage current can be fitted to Poole-Frenkel emission. Amorphous films show the best characteristics in terms of capacitance-voltage behaviour, leakage current and interfacial state density, with conductance and flat-band voltage transients almost negligible.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MEC
dc.description.sponsorshipSpanish MCYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25962
dc.identifier.doi10.1088/0268-1242/22/12/019
dc.identifier.issn0268-1242
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0268-1242/22/12/019
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51101
dc.issue.number12
dc.journal.titleSemiconductor Science and Technology
dc.language.isoeng
dc.page.final1351
dc.page.initial1344
dc.publisherIop Publishing Ltd
dc.relation.projectIDAP2003-4434-FPU
dc.relation.projectIDTEC 2004-1237/MIC
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSemicondcutor Technology
dc.subject.keywordSilicon-Nitride
dc.subject.keywordFilms
dc.subject.keywordMetal
dc.subject.keywordQuality
dc.subject.keywordInterface
dc.subject.keywordTemperature
dc.subject.keywordTransistors
dc.subject.keywordTransients
dc.subject.keywordGrowth.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleElectrical properties of high-pressure reactive sputtered thin hafnium oxide high-k gate dielectrics
dc.typejournal article
dc.volume.number22
dcterms.references[1] Robertson, J., 2006, Rep. Prog. Phys., 69, 327. [2] Green, M.L., Gusev, E.P., Degraeve, R. and Garfunkel, E.L., 2001, J. Appl. Phys., 90, 2057. [3] Gusev, E.P., Lu, M.C., Garfunkel, E., Guftafson, T. and Green, M.L., 1999, IBM Res. Dev., 43, 265. [4] Habraken, F.H.P.M. and Kuiper, A.E.T., 1994, Mater. Sci. Eng. R, 12, 123. [5] Wong, H. and Iwai, H., 2006, Micrelectron. Eng., 83, 1867. [6] Wilk, G.D., Wallance, R.M. and Anthony, J.M., 2001, J. Appl. Phys., 89, 5243. [7] Houssa, M., Partisano, L., Ragnarsson, L–Å., Degraeve, R., Schram, T., Pourtois, G., De Gendt, S., Groeseneken, G. and Heyns, M.M., 2006, Mater. Sci. Eng. R, 51, 37. [8] Callegari, A., et al., 2004, IEDM Tech. Dig. (NJ: IEEE), p. 825. [9] Quevedo-López, M.A., Chambers, J.J., Visokay, M.R., Shanware, A. and Colombo, L., 2005, Appl. Phys. Lett., 87, 012902. [10] Watannabe, T., Takayanagi, M., Kojima, K., Sekine, K., Yamasaki, H., Eguchi, K., Ishimaru, K. and Ishiuchi, H. 2004, IEDM Tech. Dig. (NJ: IEEE), p. 507. [11] International Technology Roadmap for Semiconductors, 2006, [on line] Available at http://www.itrs.net/. [12] Kerber, A., Cartier, E., Pantisano, L., Rosmeulen, M., Degraeve, R., Kauerauf, T., Groeseneken, G., Maes, H.E. and Schwalke, U., 2003, Proc. 41st Annu. Int. Reliability Physics Symp., p. 41. [13] Kerber, A., Cartier, E., Pantisano, L., Degraeve, R., Groeseneken, G., Maes, H.E. and Schwalke, U., 2004, Microelectron. Eng., 72, 267. [14] Chowdhury, N.A., Garg, R. and Misra, D., 2004, Appl. Phys, Lett., 85, 3289. [15] Degraeve, R., Kerber, A., Roussel, Ph., Cartier, E., Kauerauf, T., Pantisano, L. and Groeseneken, G., 2003, IEDM Tech. Dig., (NJ: IEEE), p. 935. [16] Shickova, A., Kaczer, B., Simoen, E., Verheyen, P., Eneman, G., Jurczak, M., Absil, P., Maes, H. and Groeseneken, G., 2007, Micrelectron. Eng., 84, 1906. [17] Alam, M.A., 2003, IEDM Tech, Dig., (NJ: IEEE), p. 345. [18] San Andrés, E., Toledano-Luque, M., Prado, Á, Navacerrada, M.A., Mártil, I., González-Díaz, G., Bohne, W., Röhrich, J. and Strub, E., 2005, J. Vac. Sci. Technol. A, 23, 1523. [19] Thornton, J.A., 1974, J. Vac. Sci. Technol., 11, 666. [20] Toledano-Luque, M., San Andrés, E., Prado, Á., Mártil, I., González-Díaz, G., Martínez, F.L., Bohne, W., Röhrich, J. and Strub, E., 2007, J. Appl. Phys., 102, 044106. [21] Toledano-Luque, M., San Andrés, E., Olea, J., Prado, Á., Mártil, I., Bohne, W., Röhrich, J. and Strub, E.J., 2006, Mater. Sci. Semicond. Proc., 9, 1020. [22] Kern, W. and Puotinen, D.S., 1970, RCA Rev., 31, 187. [23] Hann, R.E., Suitch, P.R. and Pentecost, J.L., 1985, J. Am. Ceram. Soc., 68, C-285. [24] Fitch, J.T., Kim, S.S. and Lucovsky, G., 1990, J. Vac. Sci. Technol. A, 8, 1871. [25] Tsu, D.V., 2000, J. Vac. Sci. Technol. B, 18, 1796. [26] Chapman, B., 1980, Glow Discharge Processes (New York: Wiley). [27] Toledano-Luque, M., Lucía, M.L., del Prado, Á., San Andrés, E., Mártil, I. and González-Díaz, G., 2007, Appl. Phys. Lett., submitted. [28] Tsui, B. and Chang, H., 2003, J. Appl. Phys., 93, 10119. [29] Yeo, Y-C., Ranade, P., King, T-J. and Hu, C., 2002, IEEE Electron Device Lett., 23, 342. [30] Yeo, Y-C., King, T-J. and Hu, C., 2002, J. Appl. Phys., 92, 7266. [31] Cho, B.O., Wang, J., Sha, L. and Chang, J.P., 2002, Appl. Phys. Lett., 80, 1052. [32] Novkovski, N. and Atanassova, E., 2006, Appl. Phys. A, 83, 435. [33] Yang, W., Marino, J., Monson, A. and Wolden, C.A., 2006, Semicond. Sci. Technol., 21, 1573. [34] Novkoski, N., 2006, Semicond. Sci. Technol., 21, 945. [35] Hegab, N.A. and Atya, H.E., 2006, J. Ovonic Res., 2, 21. [36] Dueñas, S., Castán, H., García, H., Bailón, L., Kukli, K., Ritala, M. and Leskelä, M., 2007, Microelectron. Reliab., 47, 653. [37] Frenkel, J., 1938, Phys. Rev., 54, 647. [38] Dueñas, S., Castán, H., García, H., Barbolla, J., Kukli, K. and Aarik, J., 2004, J. Appl. Phys., 96, 1365. [39] Dueñas, S., Peláez, R., Castán, H., Pinacho, R., Quintanilla, L., Barbolla, J., Mártil, I. and González-Díaz, G., 1997, Appl. Phys. Lett., 71, 826. [40] Castán, H., Dueñas, S., Barbolla, J., Redondo, E., Blanco, N., Mártil, I. and González-Díaz, G., 2000, Microelectron. Reliab., 40, 845.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,29.pdf
Size:
485.27 KB
Format:
Adobe Portable Document Format

Collections