Electrical properties of high-pressure reactive sputtered thin hafnium oxide high-k gate dielectrics

Thumbnail Image
Full text at PDC
Publication Date
Mártil de la Plaza, Ignacio
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Iop Publishing Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
Thin films of hafnium oxide have been deposited by the high-pressure reactive sputtering (HPRS) system. In this growth system the deposition pressure is around 1 mbar, three orders of magnitude higher than in the conventional ones, assuring that both reflected and sputtered particles reach the substrate with a low energy. The amorphous or polycrystalline structure is modified by adjusting the ratio of oxygen to argon of the sputtering gas. The electrical characteristics of both polycrystalline and amorphous films are compared. In all cases, the leakage current can be fitted to Poole-Frenkel emission. Amorphous films show the best characteristics in terms of capacitance-voltage behaviour, leakage current and interfacial state density, with conductance and flat-band voltage transients almost negligible.
© 2007 IOP Publishing Ltd. The study was partially supported by the local government (Junta de Castilla y León) under Grant No VA018A06 and by the Spanish TEC2005 under Grant No 05101/MIC. The authors acknowledge CAI de Técnicas Físicas, CAI de Espectroscopía y Espectrometría and CAI de Microscopía y Citometría of the Universidad Complutense de Madrid for technical support. This work was made possible thanks to the AP2003-4434-FPU grant of the SpanishMEC and the contract TEC 2004-1237/MIC of the Spanish MCYT.
Unesco subjects
[1] Robertson, J., 2006, Rep. Prog. Phys., 69, 327. [2] Green, M.L., Gusev, E.P., Degraeve, R. and Garfunkel, E.L., 2001, J. Appl. Phys., 90, 2057. [3] Gusev, E.P., Lu, M.C., Garfunkel, E., Guftafson, T. and Green, M.L., 1999, IBM Res. Dev., 43, 265. [4] Habraken, F.H.P.M. and Kuiper, A.E.T., 1994, Mater. Sci. Eng. R, 12, 123. [5] Wong, H. and Iwai, H., 2006, Micrelectron. Eng., 83, 1867. [6] Wilk, G.D., Wallance, R.M. and Anthony, J.M., 2001, J. Appl. Phys., 89, 5243. [7] Houssa, M., Partisano, L., Ragnarsson, L–Å., Degraeve, R., Schram, T., Pourtois, G., De Gendt, S., Groeseneken, G. and Heyns, M.M., 2006, Mater. Sci. Eng. R, 51, 37. [8] Callegari, A., et al., 2004, IEDM Tech. Dig. (NJ: IEEE), p. 825. [9] Quevedo-López, M.A., Chambers, J.J., Visokay, M.R., Shanware, A. and Colombo, L., 2005, Appl. Phys. Lett., 87, 012902. [10] Watannabe, T., Takayanagi, M., Kojima, K., Sekine, K., Yamasaki, H., Eguchi, K., Ishimaru, K. and Ishiuchi, H. 2004, IEDM Tech. Dig. (NJ: IEEE), p. 507. [11] International Technology Roadmap for Semiconductors, 2006, [on line] Available at [12] Kerber, A., Cartier, E., Pantisano, L., Rosmeulen, M., Degraeve, R., Kauerauf, T., Groeseneken, G., Maes, H.E. and Schwalke, U., 2003, Proc. 41st Annu. Int. Reliability Physics Symp., p. 41. [13] Kerber, A., Cartier, E., Pantisano, L., Degraeve, R., Groeseneken, G., Maes, H.E. and Schwalke, U., 2004, Microelectron. Eng., 72, 267. [14] Chowdhury, N.A., Garg, R. and Misra, D., 2004, Appl. Phys, Lett., 85, 3289. [15] Degraeve, R., Kerber, A., Roussel, Ph., Cartier, E., Kauerauf, T., Pantisano, L. and Groeseneken, G., 2003, IEDM Tech. Dig., (NJ: IEEE), p. 935. [16] Shickova, A., Kaczer, B., Simoen, E., Verheyen, P., Eneman, G., Jurczak, M., Absil, P., Maes, H. and Groeseneken, G., 2007, Micrelectron. Eng., 84, 1906. [17] Alam, M.A., 2003, IEDM Tech, Dig., (NJ: IEEE), p. 345. [18] San Andrés, E., Toledano-Luque, M., Prado, Á, Navacerrada, M.A., Mártil, I., González-Díaz, G., Bohne, W., Röhrich, J. and Strub, E., 2005, J. Vac. Sci. Technol. A, 23, 1523. [19] Thornton, J.A., 1974, J. Vac. Sci. Technol., 11, 666. [20] Toledano-Luque, M., San Andrés, E., Prado, Á., Mártil, I., González-Díaz, G., Martínez, F.L., Bohne, W., Röhrich, J. and Strub, E., 2007, J. Appl. Phys., 102, 044106. [21] Toledano-Luque, M., San Andrés, E., Olea, J., Prado, Á., Mártil, I., Bohne, W., Röhrich, J. and Strub, E.J., 2006, Mater. Sci. Semicond. Proc., 9, 1020. [22] Kern, W. and Puotinen, D.S., 1970, RCA Rev., 31, 187. [23] Hann, R.E., Suitch, P.R. and Pentecost, J.L., 1985, J. Am. Ceram. Soc., 68, C-285. [24] Fitch, J.T., Kim, S.S. and Lucovsky, G., 1990, J. Vac. Sci. Technol. A, 8, 1871. [25] Tsu, D.V., 2000, J. Vac. Sci. Technol. B, 18, 1796. [26] Chapman, B., 1980, Glow Discharge Processes (New York: Wiley). [27] Toledano-Luque, M., Lucía, M.L., del Prado, Á., San Andrés, E., Mártil, I. and González-Díaz, G., 2007, Appl. Phys. Lett., submitted. [28] Tsui, B. and Chang, H., 2003, J. Appl. Phys., 93, 10119. [29] Yeo, Y-C., Ranade, P., King, T-J. and Hu, C., 2002, IEEE Electron Device Lett., 23, 342. [30] Yeo, Y-C., King, T-J. and Hu, C., 2002, J. Appl. Phys., 92, 7266. [31] Cho, B.O., Wang, J., Sha, L. and Chang, J.P., 2002, Appl. Phys. Lett., 80, 1052. [32] Novkovski, N. and Atanassova, E., 2006, Appl. Phys. A, 83, 435. [33] Yang, W., Marino, J., Monson, A. and Wolden, C.A., 2006, Semicond. Sci. Technol., 21, 1573. [34] Novkoski, N., 2006, Semicond. Sci. Technol., 21, 945. [35] Hegab, N.A. and Atya, H.E., 2006, J. Ovonic Res., 2, 21. [36] Dueñas, S., Castán, H., García, H., Bailón, L., Kukli, K., Ritala, M. and Leskelä, M., 2007, Microelectron. Reliab., 47, 653. [37] Frenkel, J., 1938, Phys. Rev., 54, 647. [38] Dueñas, S., Castán, H., García, H., Barbolla, J., Kukli, K. and Aarik, J., 2004, J. Appl. Phys., 96, 1365. [39] Dueñas, S., Peláez, R., Castán, H., Pinacho, R., Quintanilla, L., Barbolla, J., Mártil, I. and González-Díaz, G., 1997, Appl. Phys. Lett., 71, 826. [40] Castán, H., Dueñas, S., Barbolla, J., Redondo, E., Blanco, N., Mártil, I. and González-Díaz, G., 2000, Microelectron. Reliab., 40, 845.