Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multiple orthogonal polynomials, string equations and the large-n limit

dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T04:00:23Z
dc.date.available2023-06-20T04:00:23Z
dc.date.issued2009-03-22
dc.description©IOP Publishing Ltd. The authors wish to thank the Spanish Ministerio de Educación y Ciencia (research project FIS2008-00200/FIS) for its finantial support. This work is also part of the MISGAM programme of the European Science Foundation.
dc.description.abstractThe Riemann-Hilbert problems for multiple orthogonal polynomials of types I and II are used to derive string equations associated with pairs of Lax-Orlov operators. A method for determining the quasiclassical limit of string equations in the phase space of the Whitham hierarchy of dispersionless integrable systems is provided. Applications to the analysis of the large-n limit of multiple orthogonal polynomials and their associated random matrix ensembles and models of non-intersecting Brownian motions are given.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministerio de Educación y Ciencia
dc.description.sponsorshipEuropean Science Foundation (MISGAM programme)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34240
dc.identifier.doi10.1088/1751-8113/42/20/205204
dc.identifier.issn1751-8113
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1751-8113/42/20/205204
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.relatedurlhttp://arxiv.org/abs/0812.3817
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44794
dc.issue.number20
dc.journal.titleJournal of physics A: Mathematical and theoretical
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectIDFIS2008-00200/FIS
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordGaussian random matrices
dc.subject.keywordNonintersecting brownian motions
dc.subject.keywordUniversal whitham hierarchy
dc.subject.keywordExternal source
dc.subject.keywordModels
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleMultiple orthogonal polynomials, string equations and the large-n limit
dc.typejournal article
dc.volume.number42
dcterms.references[1] P. Di Francesco, P. Ginsparg and Z. Zinn-Justin, Phys. Rept. 254,1 (1995) [2] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert approach, Courant Lecture Notes in Mathematics Vol. 3, Amer. Math. Soc., Providence R.I. 1999. [3] A.S. Fokas, A.R. Its and A.V. Kitaev, Commun. Math. Phys. 147, 395 (1992) [4] P. Deift and X. Zhou, Ann. Math. 2, 137 (1993) [5] W. Van Assche, J.S. Geronimo, and A.B.J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, In: Special Functions 2000: Current Perspectives and Future Directions (J. Bustoz et al., eds.), Kluwer, Dordrecht, (2001) 2359. [6] P.M. Bleher and A.B.J. Kuijlaars, Int. Math. Research Notices 2004, no 3 (2004), 109129. [7] P.M. Bleher and A.B.J. Kuijlaars, Comm. Math. Phys. 252 (2004), 4376. [8] A.I. Aptekarev, P.M. Bleher and A.B.J. Kuijlaars, Comm. Math. Phys. 259 (2005), 367289. [9] P.M. Bleher and A.B.J. Kuijlaars, , Comm. Math. Phys. 270 (2007), 481. [10] E. Daems, Asymptotics for non-intersecting Brownian motions using multiple orthogonal polynomials, Ph.D. thesis, K.U.Leuven, 2006, URL http://hdl.handle.net/1979/324. [11] I. M. Krichever, Comm. Pure. Appl. Math. 47 (1994), 437. [12] K. Takasaki and T. Takebe, Rev. Math. Phys. 7, 743 (1995) [13] M. J. Bergvelt and A. P. E. ten Kroode, Pacific J. Math. 171 23 (1995). [14] M. Mañas, E. Medina and L. Mart´ınez Alonso, J. Phys.A: Math. Gen. 39 (2006) 2349. [15] L. Martínez Alonso, E. Medina and M. Mañas, J. Math. Phys. 47 (2006) 083512. [16] K. Takasaki, Dispersionless integrable hierarchies revisited, talk delivered at SISSA at september 2005 (MISGAM program); K. Takasaki and T. Takebe, Physica D 235 (2007) 109. [17] E. Daems and A.B.J. Kuijlaars, J. of Approx. Theory 146 (2007) 91. [18] L. Martínez Alonso and E. Medina, J. Phys.A: Math. Gen. 40 (2007) 14223. [19] L. Martínez Alonso and E. Medina, J. Phys.A: Math. Gen. 41 (2008) 335202. [20] K. Johansson, Probab. Theory Related Fields 123 (2002), 225. [21] M. Katori and H. Tanemura, Phys. Rev. E 66 (2002) Art. No. 011105. [22] T. Nagao and P.J Forrester, Nuclear Phys. B 620 (2002), 551. [23] L. Pastur, Teoret. Mat. Fiz. 10 (1972), 102112. [24] Mark Adler, Pierre van Moerbeke and Pol Vanhaecke, Moment matrices and multi- omponent KP, with applications to random matrix theory, preprint math-ph/0612064
dspace.entity.typePublication
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martinezalonso14preprint.pdf
Size:
314.74 KB
Format:
Adobe Portable Document Format

Collections