Genuine multipartite entanglement in noisy quantum networks highly depends on the topology
dc.contributor.author | Contreras Tejada, Patricia | |
dc.contributor.author | Palazuelos Cabezón, Carlos | |
dc.contributor.author | Vicente, Julio I. de | |
dc.date.accessioned | 2023-06-17T08:28:59Z | |
dc.date.available | 2023-06-17T08:28:59Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Quantum networks are under current active investigation for the implementation of quantum communication tasks. With this motivation in mind, we study the entanglement properties of the multipartite states underlying these networks. We show that, in sharp contrast to the case of pure states, genuine multipartite entanglement is severely affected by the presence of noise depending on the network topology: the amount of connectivity determines whether genuine multipartite entanglement is robust for any system size or whether it is completely washed out under the slightest form of noise for a sufficiently large number of parties. The impossibility to obtain genuine multipartite entanglement in some networks implies some fundamental limitations for their applications. In addition, the family of states considered in this work proves very useful to find new examples of states with interesting properties. We show this by constructing states of any number of parties that display superactivation of genuine multipartite nonlocality. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/74351 | |
dc.identifier.doi | 10.1103/PhysRevLett.126.040501 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.officialurl | https://doi.org/10.1103/PhysRevLett.126.040501 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7252 | |
dc.journal.title | Physical review letters | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Nonlocality | |
dc.subject.keyword | Quantum entanglement | |
dc.subject.keyword | Quantum networks | |
dc.subject.ucm | Física matemática | |
dc.title | Genuine multipartite entanglement in noisy quantum networks highly depends on the topology | |
dc.type | journal article | |
dc.volume.number | 126 | |
dcterms.references | [1] R. Horodecki et al., Rev. Mod. Phys. 81, 865 (2009). [2] L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008); J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010). [3] M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999); D. Gottesman, Phys. Rev. A 61, 042311 (2000). [4] R. Augusiak and P. Horodecki, Phys. Rev. A 80, 042307 (2009). [5] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001). [6] K. Azuma, S. Bäuml, T. Coopmans, D. Elkouss, and B. Li, AVS Quantum Sci. 3, 014101 (2021). [7] M. Navascues, E. Wolfe, D. Rosset, and A. Pozas-Kerstjens, Phys. Rev. Lett. 125, 240505 (2020). [8] T. Kraft, S. Designolle, C. Ritz, N. Brunner, O. Gühne, and M. Huber, arXiv:2002.03970 (2020). [9] For works studying LOCC convertibility in networks sharing particular pure bipartite entangled states see H. Yamasaki, A. Soeda, and M. Murao, Phys. Rev. A 96 032330 (2017); H. Yamasaki, A. Pirker, M. Murao, W. Dür, and B. Kraus, Phys. Rev. A 98, 052313 (2018); C. Spee and T. Kraft, arXiv:2105.01090 (2021). [10] S. Das, S. Bäuml, M. Winczewski, and K. Horodecki, arXiv:1912.03646 (2019). [11] P. Contreras-Tejada, C. Palazuelos, and J. I. de Vicente, Phys. Rev. Lett. 126, 040501 (2021). [12] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H.-J. Briegel, Proceedings of the International School of Physics "Enrico Fermi" on "Quantum Computers, Algorithms and Chaos", arXiv:quant-ph/0602096 (2006); H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, Nature Physics 5, 19 (2009). [13] C. Kruszynska and B. Kraus, Phys. Rev. A 79, 052304 (2009); M. Rossi, M. Huber, D. Bruß, and C. Macchiavello, New J. Phys. 15, 113022 (2013). [14] R. Orús, Nat. Rev. Phys. 1, 538 (2019). [15] R. Augusiak, M. Demianowicz, J. Tura, and A. Acin, Phys. Rev. Lett. 115, 030404 (2015); R. Augusiak, M. Demianowicz,J. Tura, Phys. Rev. A 98, 012321 (2018). [16] J. Bowles, J. Francfort, M. Fillettaz, F. Hirsch, and N. Brunner, Phys. Rev. Lett. 116, 130401 (2016). [17] C. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012). [18] M. Horodecki and P Horodecki, Phys. Rev. A 59, 4206 (1999). [19] Y. Sun and L. Chen, Ann. Phys. (Berlin) 533, 2000432 (2021). [20] B. Jungnitsch, T. Moroder, and O. Gühne, Phys. Rev. Lett. 106, 190502 (2011). [21] See supplemental material for full proofs of the results in the main text. [22] I. Devetak and A. Winter, Proc. R. Soc. A 461, 207 (2005). [23] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014). [24] R. Gallego, L. E. Würflinger, A. Acin, and M. Navascues, Phys. Rev. Lett. 109, 070401 (2012). [25] J.-D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Phys. Rev. A 88, 014102 (2013). [26] D. Schmid, D. Rosset, and F. Buscemi, Quantum 4, 262 (2020). [27] E. Wolfe, D. Schmid, A. B. Sainz, R. Kunjwal, and R. W. Spekkens, Quantum 4, 280 (2020). [28] R. F. Werner, Phys. Rev. A 40 (8), 4277-4281 (1989). [29] J. Barrett, Phys. Rev. A 65 (2002). [30] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Rev. Mod. Phys. 92, 15001 (2020). [31] M. L. Almeida, S. Pironio, J. Barrett, G. Toth, and A. Acin, Phys. Rev. Lett. 99, 040403 (2007). [32] A. Amr, C. Palazuelos, and J. I. de Vicente, J. Phys. A: Math. Theor. 53, 275301 (2020). [33] D. Cavalcanti, A. Acin, N. Brunner, and T. Vertesi, Phys. Rev. A 87, 042104 (2013). [34] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 87, no. 13, 1895-1899 (1993). [35] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, no. 5, 3824-3851 (1996). [36] M. Hamada, Phys. Rev. A 65, no. 5, 052305 (2002). [37] I. Devetak and A. Winter, Proc. R. Soc. A. 461, no. 2053, 207-235 (2005). [38] A. Biswas, R. Prabhu, A. Sen(De), and U. Sen, Phys. Rev. A 90, no. 3, 032301 (2014). [39] G. Svetlichny, Phys. Rev. D 461, no. 10, 3066-3069 (1987). [40] S. A. Khot and N. K. Vishnoi, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), 53-62 (2005). [41] H. Buhrman, O. Regev, G. Scarpa, and R. de Wolf, Theory of Computing 8, no. 27, 623-645 (2012). [42] R Raz, SIAM J. Comput. 27, no. 3, 763-803 (1998). [43] M. Horodecki and P. Horodecki, Phys. Rev. A 87, no. 6, 4206-4216 (1999). [44] C. Palazuelos, J. Funct. Anal. 267, no. 7, 1959-1985 (2014). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 09970d9e-6722-4f02-aac0-023cf9867638 | |
relation.isAuthorOfPublication.latestForDiscovery | 09970d9e-6722-4f02-aac0-023cf9867638 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- palazuelos_genuinemultipartiteentanglementinnoisy.pdf
- Size:
- 291.34 KB
- Format:
- Adobe Portable Document Format