Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Genuine multipartite entanglement in noisy quantum networks highly depends on the topology

dc.contributor.authorContreras Tejada, Patricia
dc.contributor.authorPalazuelos Cabezón, Carlos
dc.contributor.authorVicente, Julio I. de
dc.date.accessioned2023-06-17T08:28:59Z
dc.date.available2023-06-17T08:28:59Z
dc.date.issued2021
dc.description.abstractQuantum networks are under current active investigation for the implementation of quantum communication tasks. With this motivation in mind, we study the entanglement properties of the multipartite states underlying these networks. We show that, in sharp contrast to the case of pure states, genuine multipartite entanglement is severely affected by the presence of noise depending on the network topology: the amount of connectivity determines whether genuine multipartite entanglement is robust for any system size or whether it is completely washed out under the slightest form of noise for a sufficiently large number of parties. The impossibility to obtain genuine multipartite entanglement in some networks implies some fundamental limitations for their applications. In addition, the family of states considered in this work proves very useful to find new examples of states with interesting properties. We show this by constructing states of any number of parties that display superactivation of genuine multipartite nonlocality.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74351
dc.identifier.doi10.1103/PhysRevLett.126.040501
dc.identifier.issn0031-9007
dc.identifier.officialurlhttps://doi.org/10.1103/PhysRevLett.126.040501
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7252
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordNonlocality
dc.subject.keywordQuantum entanglement
dc.subject.keywordQuantum networks
dc.subject.ucmFísica matemática
dc.titleGenuine multipartite entanglement in noisy quantum networks highly depends on the topology
dc.typejournal article
dc.volume.number126
dcterms.references[1] R. Horodecki et al., Rev. Mod. Phys. 81, 865 (2009). [2] L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008); J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010). [3] M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999); D. Gottesman, Phys. Rev. A 61, 042311 (2000). [4] R. Augusiak and P. Horodecki, Phys. Rev. A 80, 042307 (2009). [5] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001). [6] K. Azuma, S. Bäuml, T. Coopmans, D. Elkouss, and B. Li, AVS Quantum Sci. 3, 014101 (2021). [7] M. Navascues, E. Wolfe, D. Rosset, and A. Pozas-Kerstjens, Phys. Rev. Lett. 125, 240505 (2020). [8] T. Kraft, S. Designolle, C. Ritz, N. Brunner, O. Gühne, and M. Huber, arXiv:2002.03970 (2020). [9] For works studying LOCC convertibility in networks sharing particular pure bipartite entangled states see H. Yamasaki, A. Soeda, and M. Murao, Phys. Rev. A 96 032330 (2017); H. Yamasaki, A. Pirker, M. Murao, W. Dür, and B. Kraus, Phys. Rev. A 98, 052313 (2018); C. Spee and T. Kraft, arXiv:2105.01090 (2021). [10] S. Das, S. Bäuml, M. Winczewski, and K. Horodecki, arXiv:1912.03646 (2019). [11] P. Contreras-Tejada, C. Palazuelos, and J. I. de Vicente, Phys. Rev. Lett. 126, 040501 (2021). [12] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H.-J. Briegel, Proceedings of the International School of Physics "Enrico Fermi" on "Quantum Computers, Algorithms and Chaos", arXiv:quant-ph/0602096 (2006); H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, Nature Physics 5, 19 (2009). [13] C. Kruszynska and B. Kraus, Phys. Rev. A 79, 052304 (2009); M. Rossi, M. Huber, D. Bruß, and C. Macchiavello, New J. Phys. 15, 113022 (2013). [14] R. Orús, Nat. Rev. Phys. 1, 538 (2019). [15] R. Augusiak, M. Demianowicz, J. Tura, and A. Acin, Phys. Rev. Lett. 115, 030404 (2015); R. Augusiak, M. Demianowicz,J. Tura, Phys. Rev. A 98, 012321 (2018). [16] J. Bowles, J. Francfort, M. Fillettaz, F. Hirsch, and N. Brunner, Phys. Rev. Lett. 116, 130401 (2016). [17] C. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012). [18] M. Horodecki and P Horodecki, Phys. Rev. A 59, 4206 (1999). [19] Y. Sun and L. Chen, Ann. Phys. (Berlin) 533, 2000432 (2021). [20] B. Jungnitsch, T. Moroder, and O. Gühne, Phys. Rev. Lett. 106, 190502 (2011). [21] See supplemental material for full proofs of the results in the main text. [22] I. Devetak and A. Winter, Proc. R. Soc. A 461, 207 (2005). [23] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014). [24] R. Gallego, L. E. Würflinger, A. Acin, and M. Navascues, Phys. Rev. Lett. 109, 070401 (2012). [25] J.-D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Phys. Rev. A 88, 014102 (2013). [26] D. Schmid, D. Rosset, and F. Buscemi, Quantum 4, 262 (2020). [27] E. Wolfe, D. Schmid, A. B. Sainz, R. Kunjwal, and R. W. Spekkens, Quantum 4, 280 (2020). [28] R. F. Werner, Phys. Rev. A 40 (8), 4277-4281 (1989). [29] J. Barrett, Phys. Rev. A 65 (2002). [30] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Rev. Mod. Phys. 92, 15001 (2020). [31] M. L. Almeida, S. Pironio, J. Barrett, G. Toth, and A. Acin, Phys. Rev. Lett. 99, 040403 (2007). [32] A. Amr, C. Palazuelos, and J. I. de Vicente, J. Phys. A: Math. Theor. 53, 275301 (2020). [33] D. Cavalcanti, A. Acin, N. Brunner, and T. Vertesi, Phys. Rev. A 87, 042104 (2013). [34] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 87, no. 13, 1895-1899 (1993). [35] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, no. 5, 3824-3851 (1996). [36] M. Hamada, Phys. Rev. A 65, no. 5, 052305 (2002). [37] I. Devetak and A. Winter, Proc. R. Soc. A. 461, no. 2053, 207-235 (2005). [38] A. Biswas, R. Prabhu, A. Sen(De), and U. Sen, Phys. Rev. A 90, no. 3, 032301 (2014). [39] G. Svetlichny, Phys. Rev. D 461, no. 10, 3066-3069 (1987). [40] S. A. Khot and N. K. Vishnoi, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), 53-62 (2005). [41] H. Buhrman, O. Regev, G. Scarpa, and R. de Wolf, Theory of Computing 8, no. 27, 623-645 (2012). [42] R Raz, SIAM J. Comput. 27, no. 3, 763-803 (1998). [43] M. Horodecki and P. Horodecki, Phys. Rev. A 87, no. 6, 4206-4216 (1999). [44] C. Palazuelos, J. Funct. Anal. 267, no. 7, 1959-1985 (2014).
dspace.entity.typePublication
relation.isAuthorOfPublication09970d9e-6722-4f02-aac0-023cf9867638
relation.isAuthorOfPublication.latestForDiscovery09970d9e-6722-4f02-aac0-023cf9867638

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
palazuelos_genuinemultipartiteentanglementinnoisy.pdf
Size:
291.34 KB
Format:
Adobe Portable Document Format

Collections