Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

A risk-averse solution for the prescribed burning problem

dc.contributor.authorLeón Caballero, Javier
dc.contributor.authorVitoriano Villanueva, Begoña
dc.contributor.authorHearne, John
dc.date.accessioned2023-06-22T12:30:06Z
dc.date.available2023-06-22T12:30:06Z
dc.date.issued2023-11-02
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractHazard reduction is a complex task involving important efforts to prevent and mitigate the consequences of disasters. Many countries around the world have experienced devastating wildfires in recent decades and risk reduction strategies are now more important than ever. Reducing contiguous areas of high fuel load through prescribed burning is a fuel management strategy for reducing wildfire hazard. Unfortunately, this has an impact on the habitat of fauna and thus constrains a prescribed burning schedule which is also subject to uncertainty. To address this problem a mathematical programming model is proposed for scheduling prescribed burns on treatment units on a landscape over a planning horizon. The model takes into account the uncertainty related to the conditions for performing the scheduled prescribed burns as well as several criteria related to the safety and quality of the habitat. This multiobjective stochastic problem is modelled from a riskaverse perspective whose aim is to minimize the worst achievement of the criteria on the different scenarios considered. This model is applied to a real case study in Andalusia (Spain) comparing the solutions achieved with the risk-neutral solution provided by the simple weighted aggregated average. The results obtained show that our proposed approach outperforms the risk-neutral solution in worst cases without a significant loss of quality in the global set of scenarios.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75682
dc.identifier.citationLeón, J., Vitoriano, B., Hearne, J.: A risk-averse solution for the prescribed burning problem. Safety Science. 158, 105951 (2023). https://doi.org/10.1016/j.ssci.2022.105951
dc.identifier.doi10.1016/j.ssci.2022.105951
dc.identifier.issn0925-7535
dc.identifier.officialurlhttps://doi.org/10.1016/j.ssci.2022.105951
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72696
dc.journal.titleSafety Science
dc.language.isoeng
dc.page.initial105951
dc.publisherElsevier Science
dc.relation.projectIDGEO-SAFE (691161)
dc.relation.projectIDLOG4D (PID2019-108679RB-I009
dc.relation.projectIDCT27/16-CT28/16
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordWildfire prevention
dc.subject.keywordMultiobjective stochastic programming
dc.subject.keywordPrescribed burning
dc.subject.ucmProcesos estocásticos
dc.subject.unesco1208.08 Procesos Estocásticos
dc.titleA risk-averse solution for the prescribed burning problemen
dc.typejournal article
dc.volume.number158
dspace.entity.typePublication
relation.isAuthorOfPublication7ae1e4fd-90b6-48cb-8673-9d9be0ee5422
relation.isAuthorOfPublicationefbdfdd4-3d98-4463-813b-73beda8ff1dc
relation.isAuthorOfPublication.latestForDiscovery7ae1e4fd-90b6-48cb-8673-9d9be0ee5422

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0925753522002909-main.pdf
Size:
1.72 MB
Format:
Adobe Portable Document Format

Collections