Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Coherent systems and Brill-Noether theory.

Loading...
Thumbnail Image

Full text at PDC

Publication date

2003

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific
Citations
Google Scholar

Citation

Abstract

Let X be a curve of genus g. A coherent system on X consists of a pair (E; V ), where E is an algebraic vector bundle over X of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter a. We study the variation of the moduli space of coherent systems when we move the parameter. As an application, we analyze the cases k = 1; 2; 3 and n = 2 explicitly. For small values of , the moduli spaces of coherent systems are related to the Brill-Noether loci, the subschemes of the moduli spaces of stable bundles consisting of those bundles with at least a prescribed number of independent sections. The study of coherent systems is applied to nd the dimension, prove the irreducibility, and in some cases calculate the Picard groups of the Brill{Noether loci with k < 3.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections