Coherent systems and Brill-Noether theory.
dc.contributor.author | Bradlow, S.B. | |
dc.contributor.author | García Prada, O. | |
dc.contributor.author | Muñoz, Vicente | |
dc.contributor.author | Newstead, P. E. | |
dc.date.accessioned | 2023-06-20T10:34:46Z | |
dc.date.available | 2023-06-20T10:34:46Z | |
dc.date.issued | 2003 | |
dc.description.abstract | Let X be a curve of genus g. A coherent system on X consists of a pair (E; V ), where E is an algebraic vector bundle over X of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter a. We study the variation of the moduli space of coherent systems when we move the parameter. As an application, we analyze the cases k = 1; 2; 3 and n = 2 explicitly. For small values of , the moduli spaces of coherent systems are related to the Brill-Noether loci, the subschemes of the moduli spaces of stable bundles consisting of those bundles with at least a prescribed number of independent sections. The study of coherent systems is applied to nd the dimension, prove the irreducibility, and in some cases calculate the Picard groups of the Brill{Noether loci with k < 3. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | EAGER | |
dc.description.sponsorship | EDGE | |
dc.description.sponsorship | Acciones Integradas Programme | |
dc.description.sponsorship | National Science Foundation | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21268 | |
dc.identifier.doi | 10.1142/S0129167X03002009 | |
dc.identifier.issn | 0129-167X | |
dc.identifier.officialurl | http://www.worldscientific.com/doi/pdf/10.1142/S0129167X03002009 | |
dc.identifier.relatedurl | http://www.worldscientific.com | |
dc.identifier.relatedurl | http://arxiv.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50629 | |
dc.issue.number | 7 | |
dc.journal.title | International journal of mathematics | |
dc.language.iso | eng | |
dc.page.final | 733 | |
dc.page.initial | 683 | |
dc.publisher | World Scientific | |
dc.relation.projectID | HPRN-CT-2000-00099 | |
dc.relation.projectID | HPRN-CT-2000-00101 | |
dc.relation.projectID | HB 1998-0006 | |
dc.relation.projectID | DMS-0072073 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Algebraic curves | |
dc.subject.keyword | Moduli of vector bundles | |
dc.subject.keyword | Coherent systems | |
dc.subject.keyword | Brill-Noetherloci. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Coherent systems and Brill-Noether theory. | |
dc.type | journal article | |
dc.volume.number | 14 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1