Modelización y simulación del movimiento celular
Loading...
Official URL
Full text at PDC
Publication date
2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
El movimiento celular combina procesos periódicos de extensión, recolocación y contracción de distintas partes de la célula. En este trabajo se revisa un modelo minimalista planteado en una dimensión y formulado en términos de leyes de conservación. El modelo se basa en un fluido de dos fases reactivo poroviscoso, destinado a describir la reptación mediante la polimerización de una red de actina que se contrae mediante motores moleculares. A pesar de su sencillez, el modelo captura algunas características esenciales del movimiento celular. Bajo la hipótesis de longitud constante, se reconstruyen las soluciones del artículo revisado mediante un esquema numérico de diferencias finitas y upwind. Al perturbar estados homogéneos de equilibrio, se obtienen soluciones de tipo onda viajera en las que la célula avanza uniformemente, y en las que el sentido del movimiento y la polaridad de la célula vienen determinados por las condiciones iniciales. Posteriormente, se revisa una generalización del modelo que permite una longitud celular variable y trata con un dominio deformable en movimiento. Se reconstruyen las soluciones numéricas del modelo, que presentan oscilaciones transitorias iniciales pero no logran mantenerlas. Finalmente, se proponen otras modificaciones al modelo que permitirían estabilizar la periodicidad en la longitud de la célula, ofreciendo así una descripción más completa y realista del ciclo de reptación celular.
Cell motility combines periodic steps of extension, translocation and contraction of different parts ofthe cell. We revise a minimal one-dimensional model formulated in terms of conservation laws. The framework is a poroviscous reactive two-phase fluid that attempts to describe the full crawling cycle through the polymerization of an actin network that is contracted by molecular motors. Even this simplest 1D model captures some essential features of cell motility and displays different type of relevant behavior. Under the hypothesis of constant length, the solutions of the reviewed article are reconstructed using a finite differences and upwind numerical scheme. Upon perturbing homogeneous stationary states, travelling-wave solutions are obtained in which the cell advances uniformly, and where the direction of movement and the cell’s polarzation are selected by the initial conditions. Then, a generalization of the model that accommodates a variable cell length by allowing for different densities of the phases constituting the cell (actin network and aqueous cytoplasm) is reviewed. This generalized model is formulated for a moving domain with a variable length. The numerical solutions of the model are reconstructed, revealing initial transient oscillations that are not sustained. Finally, additional modifications to the model are proposed to stabilize the periodicity in cell length, thereby offering a more comprehensive and realistic description of the full crawling cycle.
Cell motility combines periodic steps of extension, translocation and contraction of different parts ofthe cell. We revise a minimal one-dimensional model formulated in terms of conservation laws. The framework is a poroviscous reactive two-phase fluid that attempts to describe the full crawling cycle through the polymerization of an actin network that is contracted by molecular motors. Even this simplest 1D model captures some essential features of cell motility and displays different type of relevant behavior. Under the hypothesis of constant length, the solutions of the reviewed article are reconstructed using a finite differences and upwind numerical scheme. Upon perturbing homogeneous stationary states, travelling-wave solutions are obtained in which the cell advances uniformly, and where the direction of movement and the cell’s polarzation are selected by the initial conditions. Then, a generalization of the model that accommodates a variable cell length by allowing for different densities of the phases constituting the cell (actin network and aqueous cytoplasm) is reviewed. This generalized model is formulated for a moving domain with a variable length. The numerical solutions of the model are reconstructed, revealing initial transient oscillations that are not sustained. Finally, additional modifications to the model are proposed to stabilize the periodicity in cell length, thereby offering a more comprehensive and realistic description of the full crawling cycle.