Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum electrodynamic fluctuations of the macroscopic Josephson phase

Loading...
Thumbnail Image

Full text at PDC

Publication date

2004

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We study the equilibrium dynamics of the relative phase in a superconducting Josephson link taking into account the quantum fluctuations of the electromagnetic vacuum. The photons act as a superohmic heat bath on the relative Cooper pair number and thus, indirectly, on the macroscopic phase difference /. This leads to an enhancement of the mean square h/2 i that adds to the spread due to the Coulomb interaction carried by the longitudinal electromagnetic field. We also include the interaction with the electronic degrees of freedom due to quasiparticle tunneling, which couple to the phase and only indirectly to the particle number. The simultaneous inclusion of both the radiation field fluctuations and quasiparticle tunneling leads to a novel type of particle-bath Hamiltonian in which the quantum particle couples through its position and momentum to two independent bosonic heat baths. We study the interplay between the two mechanisms in the present context and find interference contributions to the quantum fluctuations of the phase. We explore the observability of the QED effects discussed here.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections