Quantum electrodynamic fluctuations of the macroscopic Josephson phase
dc.contributor.author | Kohler, Heiner | |
dc.contributor.author | Guinea, Francisco | |
dc.contributor.author | Sols Lucía, Ignacio | |
dc.date.accessioned | 2023-06-20T10:36:07Z | |
dc.date.available | 2023-06-20T10:36:07Z | |
dc.date.issued | 2004-03 | |
dc.description.abstract | We study the equilibrium dynamics of the relative phase in a superconducting Josephson link taking into account the quantum fluctuations of the electromagnetic vacuum. The photons act as a superohmic heat bath on the relative Cooper pair number and thus, indirectly, on the macroscopic phase difference /. This leads to an enhancement of the mean square h/2 i that adds to the spread due to the Coulomb interaction carried by the longitudinal electromagnetic field. We also include the interaction with the electronic degrees of freedom due to quasiparticle tunneling, which couple to the phase and only indirectly to the particle number. The simultaneous inclusion of both the radiation field fluctuations and quasiparticle tunneling leads to a novel type of particle-bath Hamiltonian in which the quantum particle couples through its position and momentum to two independent bosonic heat baths. We study the interplay between the two mechanisms in the present context and find interference contributions to the quantum fluctuations of the phase. We explore the observability of the QED effects discussed here. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia y Tecnología | |
dc.description.sponsorship | Ramón Areces Foundation | |
dc.description.sponsorship | RTN Network of the European Union | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22015 | |
dc.identifier.doi | 10.1016/j.aop.2003.08.014 | |
dc.identifier.issn | 0003-4916 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0003491603002197 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50727 | |
dc.issue.number | 1 | |
dc.journal.title | Annals of Physics | |
dc.language.iso | eng | |
dc.page.final | 154 | |
dc.page.initial | 127 | |
dc.publisher | Elsevier | |
dc.relation.projectID | BFM2001-0172 | |
dc.relation.projectID | MAT2002-0495-C02-01 | |
dc.relation.projectID | HPRN–CT–2000-00144 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 51 | |
dc.subject.keyword | Decoherence | |
dc.subject.keyword | Quantum dissipation | |
dc.subject.keyword | Josephson effect | |
dc.subject.keyword | Quantum electrodynamics | |
dc.subject.keyword | Macroscopic quantum mechanics | |
dc.subject.ucm | Matemáticas (Química) | |
dc.title | Quantum electrodynamic fluctuations of the macroscopic Josephson phase | |
dc.type | journal article | |
dc.volume.number | 310 | |
dcterms.references | R.P.Feynman, F. L. Vernon, Jr., Ann. Phys. (New York) bf 24, 118(1963;R.P.Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill, New York, 1965). R. P. Feynman, Phys. Rev. 97, 60 (1955). A. O. Caldeira, A. J. Leggett, Ann. Phys. (New York) 149, 374 (1983) A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987). W. G. Unruh, W. H. Zurek, Phys. Rev. D 40, 1071 (1989). A. Stern,Y. Imry, Y. Aharonov, Phys. Rev. A 41, 3436 (1990). I. Zapata, F. Sols, A. J. Leggett, Phys. Rev. A 67, 021603 (2003). F. Sols, Ann. Phys. (New York) 214, 386 (1992). B. L. Altshuler, A. G. Aronov, D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982). P. Mohanty et al., Phys. Rev. Lett. 78, 3366 (1997), Phys. Rev. B 55, R13452 (1997); D. S. Golubev et al., Phys. Rev. Lett. 81, 1074 (1998), Phys. Rev. B. 59, 9195 (1999), id. 62, 14061 (2000); R. Raimondi et al., Phys. Rev. B. 60, 5818 (1999); I. L. Aleiner et al., Wave Random Media 9, 201 (1999), J. Low Temp. Phys. 126, 1377 (2002); D. Cohen et al., Phys. Rev. B. 59, 11143 (1999); M. H. Devoret et al., Phys. Rev. Lett. 64, 1824 (1990); A. Zawadowski et al., Phys. Rev. Lett. 83, 2632 (1999). P. Cedraschi, M. B¨uttiker, Phys. Rev. B 63 165312 (2001), Ann. Phys. (New York) 289, 1 (2001). J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1977); C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms. Introduction to Quantum Electrodynamics (Wiley, New York, 1989). S. Chakravarty, R. Norton, O. F. Sylju°asen, Phys. Rev. Lett. 74, 1423 (1995). D. Loss, A. Martin, Phys. Rev. B 47, 4619 (1993). P. M. V. B. Barone, A. O. Caldeira, Phys. Rev. A 43, 57 (1991). F. Sols, I. Zapata, in New Developments on Fundamental Problems in Quantum Dynamics, M. Ferrero, A. van der Merwe, eds. (Kluwer Academic, Dordrecht, 1997). E. Joos, H. D. Zeh, Z. Phys. B 59, 223 (1985). L. H. Ford, Phys. Rev. D 47, 5571 (1993). Z. Haba, H. Kleinert, Euro. Phys. J. B 21, 4 (2001). F. Sols, Physica B 194, 1389 (1994). E. M. Wright et al., Phys. Rev. Lett. 77, 2158 (1996); Phys. Rev. A 56, 591 (1997); A. Imamoglu et al., Phys. Rev. Lett. 78, 2511 (1997); Y. Castin, J. Dalibard, Phys. Rev. A 55, 4330 (1997). M. Greiner, O. Mandel, T. W. H¨ansch, I. Bloch, Nature 419, 51 (2002). U. Eckern, G. Sch¨on, V. Ambegaokar, Phys. Rev. Lett. 48, 1745 (1982); Phys. Rev B 30, 6419 (1984). D.Rogovin,D. J.Scalapino, Ann.Phys. (New York), 86,1 (1974). J. D. Bjorken, S. D. Drell, Relativistic Quantum Mechanics (McGraw Hill, New York, 1964). G. Schön, A. D. Zaikin, Phys. Rep. 198, 237 (1990). A. J. Leggett, Phys. Rev. B 30, 1208 (1984). A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982). M. Tinkham, Introduction to Superconductivity 2nd. ed. (McGraw-Hill, New York, 1996). J. B. Ketterson, S. N. Song, Superconductivity (Cambridge University Press, Cambridge, 1999). U. Weiss, Quantum Dissipative Systems, 2nd ed. (World Scientific, Singapore, 1999). A. Cuccoli, A. Fubini, V. Tognetti, R. Vaia, Phys. Rev. E 64, 066124 (2001). P. W. Anderson, in Lectures on the Many Body Problem, E. R. Caianiello, ed. (Academic, New York, 1964). A. Schmidt, Phys. Rev. Lett. 51, 1506 (1983); M. Fisher, W. Zwerger Phys. Rev. B 32, 6190 (1985); F. Guinea, V. Hakim, A. Muramatsu, Phys. Rev. Lett. 54, 263 (1985), D. Loss, K. Mullen, Phys. Rev. A 43, 2129 (1991). P. Ullersma, Physica (Utrecht), 32, 27 (1966); id. 56 (1966); id. 74 (1966); id. 90 (1966). F. Haake, R. Reibold, Phys. Rev. A 32, 2462 (1985). V. Ambegaokar, A. Baratoff, Phys. Rev. Lett. 10, 486 (1963). B. D. Josephson, Phys. Lett. 1, 251 (1962). M. H. Cohen, L. M. Falicov, J. C. Phillips, Phys. Rev. Lett. 8, 316 (1962). A more physical local tunneling Hamiltonian, where (z) is replaced by ′(z), has been proposed in Ref.41. The change has consequences on the energy dependence of the hopping matrix elements and thus on the average transmission |T|2, which 19 is correctly given by the choice ′(z). However, this is not a problem in the context of the Ambegaokar-Baratoff formula because the product IcR is independent of the actual value of the average transmission. E. Prada, F. Sols, cond-mat/0307500, to be published. The fact that the baths couple to sin(/2) and cos(/2) eliminates unwanted dependence on the initial conditions43. J. Sánchez-Cañizares, F. Sols, Physica A 212, 181 (1994). R. E. Harris, Phys. Rev. B 11, 3329 (1975). N. R. Werthamer, Phys. Rev. 147, 255 (1966). H. Kohler, F. Sols, to be published. M.Abramowitz,I.A.Stegun, Handbook of Mathematical Functions, Dover, New York,1972 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6d35def4-3d5f-4978-800f-82b7edf76b5d | |
relation.isAuthorOfPublication.latestForDiscovery | 6d35def4-3d5f-4978-800f-82b7edf76b5d |
Download
Original bundle
1 - 1 of 1