Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum electrodynamic fluctuations of the macroscopic Josephson phase

dc.contributor.authorKohler, Heiner
dc.contributor.authorGuinea, Francisco
dc.contributor.authorSols Lucía, Ignacio
dc.date.accessioned2023-06-20T10:36:07Z
dc.date.available2023-06-20T10:36:07Z
dc.date.issued2004-03
dc.description.abstractWe study the equilibrium dynamics of the relative phase in a superconducting Josephson link taking into account the quantum fluctuations of the electromagnetic vacuum. The photons act as a superohmic heat bath on the relative Cooper pair number and thus, indirectly, on the macroscopic phase difference /. This leads to an enhancement of the mean square h/2 i that adds to the spread due to the Coulomb interaction carried by the longitudinal electromagnetic field. We also include the interaction with the electronic degrees of freedom due to quasiparticle tunneling, which couple to the phase and only indirectly to the particle number. The simultaneous inclusion of both the radiation field fluctuations and quasiparticle tunneling leads to a novel type of particle-bath Hamiltonian in which the quantum particle couples through its position and momentum to two independent bosonic heat baths. We study the interplay between the two mechanisms in the present context and find interference contributions to the quantum fluctuations of the phase. We explore the observability of the QED effects discussed here.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología
dc.description.sponsorshipRamón Areces Foundation
dc.description.sponsorshipRTN Network of the European Union
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22015
dc.identifier.doi10.1016/j.aop.2003.08.014
dc.identifier.issn0003-4916
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0003491603002197
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50727
dc.issue.number1
dc.journal.titleAnnals of Physics
dc.language.isoeng
dc.page.final154
dc.page.initial127
dc.publisherElsevier
dc.relation.projectIDBFM2001-0172
dc.relation.projectIDMAT2002-0495-C02-01
dc.relation.projectIDHPRN–CT–2000-00144
dc.rights.accessRightsrestricted access
dc.subject.cdu51
dc.subject.keywordDecoherence
dc.subject.keywordQuantum dissipation
dc.subject.keywordJosephson effect
dc.subject.keywordQuantum electrodynamics
dc.subject.keywordMacroscopic quantum mechanics
dc.subject.ucmMatemáticas (Química)
dc.titleQuantum electrodynamic fluctuations of the macroscopic Josephson phase
dc.typejournal article
dc.volume.number310
dcterms.referencesR.P.Feynman, F. L. Vernon, Jr., Ann. Phys. (New York) bf 24, 118(1963;R.P.Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill, New York, 1965). R. P. Feynman, Phys. Rev. 97, 60 (1955). A. O. Caldeira, A. J. Leggett, Ann. Phys. (New York) 149, 374 (1983) A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987). W. G. Unruh, W. H. Zurek, Phys. Rev. D 40, 1071 (1989). A. Stern,Y. Imry, Y. Aharonov, Phys. Rev. A 41, 3436 (1990). I. Zapata, F. Sols, A. J. Leggett, Phys. Rev. A 67, 021603 (2003). F. Sols, Ann. Phys. (New York) 214, 386 (1992). B. L. Altshuler, A. G. Aronov, D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982). P. Mohanty et al., Phys. Rev. Lett. 78, 3366 (1997), Phys. Rev. B 55, R13452 (1997); D. S. Golubev et al., Phys. Rev. Lett. 81, 1074 (1998), Phys. Rev. B. 59, 9195 (1999), id. 62, 14061 (2000); R. Raimondi et al., Phys. Rev. B. 60, 5818 (1999); I. L. Aleiner et al., Wave Random Media 9, 201 (1999), J. Low Temp. Phys. 126, 1377 (2002); D. Cohen et al., Phys. Rev. B. 59, 11143 (1999); M. H. Devoret et al., Phys. Rev. Lett. 64, 1824 (1990); A. Zawadowski et al., Phys. Rev. Lett. 83, 2632 (1999). P. Cedraschi, M. B¨uttiker, Phys. Rev. B 63 165312 (2001), Ann. Phys. (New York) 289, 1 (2001). J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1977); C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms. Introduction to Quantum Electrodynamics (Wiley, New York, 1989). S. Chakravarty, R. Norton, O. F. Sylju°asen, Phys. Rev. Lett. 74, 1423 (1995). D. Loss, A. Martin, Phys. Rev. B 47, 4619 (1993). P. M. V. B. Barone, A. O. Caldeira, Phys. Rev. A 43, 57 (1991). F. Sols, I. Zapata, in New Developments on Fundamental Problems in Quantum Dynamics, M. Ferrero, A. van der Merwe, eds. (Kluwer Academic, Dordrecht, 1997). E. Joos, H. D. Zeh, Z. Phys. B 59, 223 (1985). L. H. Ford, Phys. Rev. D 47, 5571 (1993). Z. Haba, H. Kleinert, Euro. Phys. J. B 21, 4 (2001). F. Sols, Physica B 194, 1389 (1994). E. M. Wright et al., Phys. Rev. Lett. 77, 2158 (1996); Phys. Rev. A 56, 591 (1997); A. Imamoglu et al., Phys. Rev. Lett. 78, 2511 (1997); Y. Castin, J. Dalibard, Phys. Rev. A 55, 4330 (1997). M. Greiner, O. Mandel, T. W. H¨ansch, I. Bloch, Nature 419, 51 (2002). U. Eckern, G. Sch¨on, V. Ambegaokar, Phys. Rev. Lett. 48, 1745 (1982); Phys. Rev B 30, 6419 (1984). D.Rogovin,D. J.Scalapino, Ann.Phys. (New York), 86,1 (1974). J. D. Bjorken, S. D. Drell, Relativistic Quantum Mechanics (McGraw Hill, New York, 1964). G. Schön, A. D. Zaikin, Phys. Rep. 198, 237 (1990). A. J. Leggett, Phys. Rev. B 30, 1208 (1984). A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982). M. Tinkham, Introduction to Superconductivity 2nd. ed. (McGraw-Hill, New York, 1996). J. B. Ketterson, S. N. Song, Superconductivity (Cambridge University Press, Cambridge, 1999). U. Weiss, Quantum Dissipative Systems, 2nd ed. (World Scientific, Singapore, 1999). A. Cuccoli, A. Fubini, V. Tognetti, R. Vaia, Phys. Rev. E 64, 066124 (2001). P. W. Anderson, in Lectures on the Many Body Problem, E. R. Caianiello, ed. (Academic, New York, 1964). A. Schmidt, Phys. Rev. Lett. 51, 1506 (1983); M. Fisher, W. Zwerger Phys. Rev. B 32, 6190 (1985); F. Guinea, V. Hakim, A. Muramatsu, Phys. Rev. Lett. 54, 263 (1985), D. Loss, K. Mullen, Phys. Rev. A 43, 2129 (1991). P. Ullersma, Physica (Utrecht), 32, 27 (1966); id. 56 (1966); id. 74 (1966); id. 90 (1966). F. Haake, R. Reibold, Phys. Rev. A 32, 2462 (1985). V. Ambegaokar, A. Baratoff, Phys. Rev. Lett. 10, 486 (1963). B. D. Josephson, Phys. Lett. 1, 251 (1962). M. H. Cohen, L. M. Falicov, J. C. Phillips, Phys. Rev. Lett. 8, 316 (1962). A more physical local tunneling Hamiltonian, where (z) is replaced by ′(z), has been proposed in Ref.41. The change has consequences on the energy dependence of the hopping matrix elements and thus on the average transmission |T|2, which 19 is correctly given by the choice ′(z). However, this is not a problem in the context of the Ambegaokar-Baratoff formula because the product IcR is independent of the actual value of the average transmission. E. Prada, F. Sols, cond-mat/0307500, to be published. The fact that the baths couple to sin(/2) and cos(/2) eliminates unwanted dependence on the initial conditions43. J. Sánchez-Cañizares, F. Sols, Physica A 212, 181 (1994). R. E. Harris, Phys. Rev. B 11, 3329 (1975). N. R. Werthamer, Phys. Rev. 147, 255 (1966). H. Kohler, F. Sols, to be published. M.Abramowitz,I.A.Stegun, Handbook of Mathematical Functions, Dover, New York,1972
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sols37.pdf
Size:
335.14 KB
Format:
Adobe Portable Document Format

Collections