Density-matrix Chern insulators: finite-temperature generalization of topological insulators

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
Thermal noise can destroy topological insulators (TI). However, we demonstrate how TIs can be made stable in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based on a generalization of the Chern number valid for general mixed states (referred to as density-matrix Chern value), which witnesses topological order in a system coupled to external noise. Additionally, we study its relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless, the density-matrix Chern value represents the part of the conductivity which is topological due to the presence of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary dimensions and density matrices.
© 2013 American Physical Society. We thank A. Dauphin for fruitful discussions. This work has been supported by the Spanish MINECO Grant No. FIS2012-33152, CAM research consortium QUITEMAD S2009-ESP1594, European Commission PICC: FP7 2007-2013, Grant No. 249958, UCM-BS Grant No. GICC-910758.
Unesco subjects