Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

An example of a quasinormable Fréchet function space which is not a Schwartz space

Loading...
Thumbnail Image

Full text at PDC

Publication date

1981

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Martínez Ansemil, J. M. & Ponte Miramontes, M. S. «An example of a quasi-normable Fréchet function space which is not a Schwartz space». Functional Analysis, Holomorphy, and Approximation Theory, editado por Silvio Machado, vol. 843, Springer Berlin Heidelberg, 1981, pp. 1-8. DOI.org (Crossref), https://doi.org/10.1007/BFb0089266.

Abstract

If E and F are complex Banach spaces, and fixing a balanced open subset U of E, we let Hb=(Hb(U;F),τb) denote the space of all mappings f:U→F which are holomorphic of bounded type, endowed with its natural topology τb; clearly, Hb is a Fréchet space. J. M. Isidro [Proc. Roy. Irish Acad. Sect. A 79 (1979), no. 12, 115–130;] characterized the topological dual of Hb as a certain space S=S(U;F) on which one has a natural inductive limit topology τ1 as well as the strong dual topology τb=β(S,Hb). Here, the authors prove that Hb is quasinormable (and hence distinguished) and τb=τ1 on S whenever U is an open ball in E or U=E. But Hb is a (Montel or) Schwartz space if and only if both E and F are finite dimensional. The authors' main result remains true for arbitrary balanced open subsets U of E [see Isidro, J. Funct. Anal. 38 (1980), no. 2, 139–145;].

Research Projects

Organizational Units

Journal Issue

Description

Proceedings of the Seminar held at the Universidade Federal do Rio de Janeiro, Rio de Janeiro, August 7–11, 1978

Unesco subjects

Keywords