An example of a quasinormable Fréchet function space which is not a Schwartz space
dc.book.title | Functional analysis, holomorphy and approximation theory | |
dc.contributor.author | Martínez Ansemil, José María | |
dc.contributor.author | Ponte Miramontes, María Del Socorro | |
dc.contributor.editor | Machado, Silvio | |
dc.date.accessioned | 2023-06-21T02:43:01Z | |
dc.date.available | 2023-06-21T02:43:01Z | |
dc.date.issued | 1981 | |
dc.description | Proceedings of the Seminar held at the Universidade Federal do Rio de Janeiro, Rio de Janeiro, August 7–11, 1978 | |
dc.description.abstract | If E and F are complex Banach spaces, and fixing a balanced open subset U of E, we let Hb=(Hb(U;F),τb) denote the space of all mappings f:U→F which are holomorphic of bounded type, endowed with its natural topology τb; clearly, Hb is a Fréchet space. J. M. Isidro [Proc. Roy. Irish Acad. Sect. A 79 (1979), no. 12, 115–130;] characterized the topological dual of Hb as a certain space S=S(U;F) on which one has a natural inductive limit topology τ1 as well as the strong dual topology τb=β(S,Hb). Here, the authors prove that Hb is quasinormable (and hence distinguished) and τb=τ1 on S whenever U is an open ball in E or U=E. But Hb is a (Montel or) Schwartz space if and only if both E and F are finite dimensional. The authors' main result remains true for arbitrary balanced open subsets U of E [see Isidro, J. Funct. Anal. 38 (1980), no. 2, 139–145;]. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22113 | |
dc.identifier.citation | Martínez Ansemil, J. M. & Ponte Miramontes, M. S. «An example of a quasi-normable Fréchet function space which is not a Schwartz space». Functional Analysis, Holomorphy, and Approximation Theory, editado por Silvio Machado, vol. 843, Springer Berlin Heidelberg, 1981, pp. 1-8. DOI.org (Crossref), https://doi.org/10.1007/BFb0089266. | |
dc.identifier.doi | 10.1007/BFb0089266 | |
dc.identifier.isbn | 3-540-10560-3 | |
dc.identifier.officialurl | https//doi.org/10.1007/BFb0089266 | |
dc.identifier.relatedurl | http://link.springer.com/chapter/10.1007%2FBFb0089266 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/65471 | |
dc.issue.number | 843 | |
dc.page.final | 8 | |
dc.page.initial | 1 | |
dc.page.total | 636 | |
dc.publication.place | Berlín | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Lecture Notes in Mathematics | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.98 | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | An example of a quasinormable Fréchet function space which is not a Schwartz space | en |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e94d6c20-a1ea-4d41-aa71-df8bbd1ad67d | |
relation.isAuthorOfPublication | 67a29a58-69bf-4013-9eef-059313b4a915 | |
relation.isAuthorOfPublication.latestForDiscovery | e94d6c20-a1ea-4d41-aa71-df8bbd1ad67d |