Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

On the topological classification of starlike bodies in Banach spaces

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorDobrowolski, Tadeusz
dc.date.accessioned2023-06-20T09:31:14Z
dc.date.available2023-06-20T09:31:14Z
dc.date.issued2003-08-15
dc.description.abstractStarlike bodies are interesting in nonlinear analysis because they are strongly related to polynomials and smooth bump functions, and their topological and geometrical properties are therefore worth studying. In this note we consider the question as to what extent the known results on topological classification of convex bodies can be generalized for the class of starlike bodies, and we obtain two main results in this line, one which follows the traditional Bessaga-Klee scheme for the classification of convex bodies (and which in this new setting happens to be valid only for starlike bodies whose characteristic cones are convex), and another one which uses a new classification scheme in terms of the homotopy type of the boundaries of the starlike bodies (and which holds in full generality provided the Banach space is infinite-dimensional).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14502
dc.identifier.doi10.1016/S0166-8641(03)00004-X
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/01668641
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49794
dc.issue.number3
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final234
dc.page.initial221
dc.publisherElsevier Science
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordConvex bodies
dc.subject.keywordManifolds
dc.subject.keywordSmooth
dc.subject.keywordHomeomorphisms
dc.subject.keywordNegligibility
dc.subject.keywordSpines
dc.subject.keywordStarlike body
dc.subject.keywordHomeomorphism
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleOn the topological classification of starlike bodies in Banach spaces
dc.typejournal article
dc.volume.number132
dcterms.references[1] F.D. Ancel, C.R. Guilbault, Campact contractible n-manifolds have are of spines (n > 5), Pacific J. Malb. 168 (1995) 1-10. [2] R.D. Anderson, J.D. MeCharen, On extending homeomorphisms to Fréchet manifolds, Prac. Amer. Math. Soc. 25 (1970) 283-289. [3] D. Azagra, M. Cepedello, Smooth Lipschitz retractions ofstarlike bodies anto their boundaries in infinitedimensional Banach spaces, Bull. London Math. Soco 33 (2001) 443--453. [4] D. Azagra, R. Deville, James' theorem fails for starlike bodies, J. Funct. Anal. 180 (2001) 328-346. [5] D. Azagra, T. Dobrowolski, Smooth negligibility of compact sets in infinite-dimensional Banach spaces, with applications, Math. Ann. 312 (3) (1998) 445-463. [6] C. Bessaga, VL. Klee, Two topological properties of topological linear spaces, Israel J. Math. 2 (1964) 211-220. [7] C. Bessaga, VL. Klee, Every non-normable Fréchet space is homeomorphic with all of its cl0sed convex bodies, Math. Ann. 163 (1966) 161-166. [8] C. Bessaga, A. Pelczynski, Selected Topics in Infinite-Dimensional Topology, in: Monografie Matematyczne, Warszw.va, 1975. [9] D. Burghe1ea, N.H. Kuiper, Hilbert manifolds, Ann. of Math. 90 (1969) 379-417. [10] H.H. Corson, VL. Klee, Topological c1assification of convex sets, in: Proc. Symp. Pure Math., Vol. 7. Convexity, American Mathematical Society, Providence, RI, 1963, pp. 37-51. [11] M.L. Curtis, K.W. Kwun, Infinite sums ofmanifolds, Topology 6 (1965) 31-42. [12] T. Dobrowolski, Smooth and R-analytic negligibility ofsubsets and extension ofhomeomorphism in Banach spaces, Studia Math. 65 (1979) 115-139. [13] T. Dobrowolski, Relative c1assification ofsmooth convex bodies, Bull. Acad. Poloo. Sci. Sér. Sci. Math. 25 (1977) 309-312. [14] J. Eells, D. Elworthy, Open embeddings of certain Banach manifolds, Ano. of Math. 91 (1970) 465--485. [15] D. Elworthy, Embeddings, isotopy and stability of Banach manifolds, Compositio Math. 24 (1972) 175-226. [16] L.C Glaser, Uncountably many contractible open 4-manifolds, Topology 6 (1967) 37--42. [17] C.R. Guilbault, Sorne campact contractible manifold containing disjoint spines, Topology 34 (1995) 99-108. [18] VL. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soco 74 (1953) 10-43. [19] D.R. McMillan, Sorne contractible open 3-manifolds, Trans. Amer. Math. Soco 102 (1962) 373-382. [20] N. Moulis, Sur les variétés hilbertiennes et les fonctions non dégénérées, Indag. Math. 30 (1968) 497-511. [21] T.B. Rushing, Topological Embeddings, Academic Press, Ne\V York, 1973. [22] lJ. Stoker, Unbounded convex point sets, Amer. J. Math. 62 (1940) 165-179.
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2003onthetopological2.pdf
Size:
4.99 MB
Format:
Adobe Portable Document Format

Collections