Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Aggregation Rules in Committee Procedures

dc.book.titleThe Ordered Weighted Averaging Operators:Theory and Applications
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorCutello, Vincenzo
dc.contributor.editorYager, Ronald R.
dc.contributor.editorKacprzyk, Janusz
dc.date.accessioned2023-06-20T21:10:29Z
dc.date.available2023-06-20T21:10:29Z
dc.date.issued1997
dc.description.abstractVery often, decision procedures in a committee compensate potential manipulations by taking into account the ordered profile of qualifications. It is therefore rejected the standard assumption of an underlying associative binary connective allowing the evaluation of arbitrary finite sequences of items by means of a one-by-one sequential process. In this paper we develop a mathematical approach for non-associative connectives allowing a sequential definition by means of binary fuzzy connectives. It will be then stressed that a connective rule should be understood as a consistent sequence of binary connective operators. Committees should previously decide about which connective rule they will be condidering, not just about a single operator.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29193
dc.identifier.citationMontero, J., Cutello, V.: Aggregation Rules in Committee Procedures. En: Yager, R.R. y Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators. pp. 219-237. Springer US, Boston, MA (1997)
dc.identifier.doi10.1007/978-1-4615-6123-1_18
dc.identifier.isbn978-1-4613-7806-8
dc.identifier.officialurlhttps//doi.org/10.1007/978-1-4615-6123-1_18
dc.identifier.relatedurlhttp://link.springer.com/chapter/10.1007%2F978-1-4615-6123-1_18
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60886
dc.language.isoeng
dc.page.final237
dc.page.initial219
dc.page.total347
dc.publication.placeBoston
dc.publisherSpringer- verlag
dc.rights.accessRightsopen access
dc.subject.cdu510.64
dc.subject.keywordFuzzy Connectives
dc.subject.keywordFuzzy Sets
dc.subject.keywordAggregation Operators
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleAggregation Rules in Committee Proceduresen
dc.typebook part
dc.volume.number5
dcterms.referencesT.H. Cormen, C.E. Leiserson and R.R. Rivest Introduction to Algorithms. MIT Press, Cambridge, MA (1990). V. Cutello and J. Montero. Recursive families of OWA operators. In: P.P. Bonissone, Ed., Proceedings of the Third IEEE Conference on Fuzzy Systems. IEEE Press, Piscataway (1994); pp. 1137–1141. V. Cutello and J. Montero. Hierarchical aggregation of OWA operators: basic measures and related computational problems. Uncertainty, Fuzzi-ness and Knowledge-Based Systems 3:17–26 (1995). V. Cutello and J. Montero. The computational problems of using OWA operators. In: B. Bouchon-Meunier, R.R. Yager and L.A. Zadeh, Eds., Fuzzy Logic and Soft Computing. World Scientific, Singapore (1995); pp. 166–172. V. Cutello and J. Montero. Information and aggregation: ethical and computational issues. In: D. Ruan, Ed., Fuzzy Sets Theory and Advanced Mathematical Applications. Kluwer, Boston (1995); pp. 175–198. J.C. Fodor, J.L. Marichal and M. Roubens. Characterization of the ordered weighted averaging operators. Institut de Mathematique, Université de Liège, Prépublication 93.011. G. J. Klir and T.A. Folger. Fuzzy sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, NJ (1988). T.C. Koopmans. Representation of preference ordering with independent components of consumption. In: C.B. McGuire and R. Radner, Eds., Decision and Organization. North-Holland, Amsterdam (1972), 57–78 (2nd edition by the University of Minnesota Press, 1986). K.T. Mak. Coherent continuous systems and the generalized functional equation of associativity. Mathematics of Operations Research, 12:597–625 (1987). J. Montero. Aggregation of fuzzy opinions in a non-homogeneous group. Fuzzy Sets and Systems, 25:15–20 (1988). J. Montero, J. Tejada and V. Cutello. A general model for deriving preference structures from data. European Journal Of Operational Research, to appear. R.R. Yager. On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18:183–190 (1988). R.R. Yager. Families of OWA operators. Fuzzy Sets and Systems, 59:125–148 (1993). R.R. Yager. MAM and MOM operators for aggregation. Information Sciences, 69:259–273 (1993). R.R. Yager. Aggregation operators and fuzzy systems modeling. Fuzzy Sets and Systems, 67:129–145 (1994).
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero188.pdf
Size:
2.17 MB
Format:
Adobe Portable Document Format