Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Entangleability of cones

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

SpringerLink
Citations
Google Scholar

Citation

G. Aubrun, L. Lami, C. Palazuelos, M. Plávala, Entangleability of cones, Geom. Funct. Anal. 31 (2021) 181–205. https://doi.org/10.1007/s00039-021-00565-5.

Abstract

We solve a long-standing conjecture by Barker, proving that the minimal and maximal tensor products of two finite-dimensional proper cones coincide if and only if one of the two cones is generated by a linearly independent set. Here, given two proper cones , , their minimal tensor product is the cone generated by products of the form , where and , while their maximal tensor product is the set of tensors that are positive under all product functionals , where and . Our proof techniques involve a mix of convex geometry, elementary algebraic topology, and computations inspired by quantum information theory. Our motivation comes from the foundations of physics: as an application, we show that any two non-classical systems modelled by general probabilistic theories can be entangled.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections