Entangleability of cones
dc.contributor.author | Palazuelos Cabezón, Carlos | |
dc.date.accessioned | 2024-01-29T09:28:20Z | |
dc.date.available | 2024-01-29T09:28:20Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We solve a long-standing conjecture by Barker, proving that the minimal and maximal tensor products of two finite-dimensional proper cones coincide if and only if one of the two cones is generated by a linearly independent set. Here, given two proper cones , , their minimal tensor product is the cone generated by products of the form , where and , while their maximal tensor product is the set of tensors that are positive under all product functionals , where and . Our proof techniques involve a mix of convex geometry, elementary algebraic topology, and computations inspired by quantum information theory. Our motivation comes from the foundations of physics: as an application, we show that any two non-classical systems modelled by general probabilistic theories can be entangled. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Alexander von Humboldt Foundation | |
dc.description.sponsorship | Slovak Research and Development Agency | |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft | |
dc.description.sponsorship | European Commission | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (España) | |
dc.description.status | pub | |
dc.identifier.citation | G. Aubrun, L. Lami, C. Palazuelos, M. Plávala, Entangleability of cones, Geom. Funct. Anal. 31 (2021) 181–205. https://doi.org/10.1007/s00039-021-00565-5. | |
dc.identifier.doi | 10.1007/S00039-021-00565-5 | |
dc.identifier.essn | 1420-8970 | |
dc.identifier.issn | 1016-443X | |
dc.identifier.officialurl | https://doi.org/10.1007/S00039-021-00565-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/95783 | |
dc.issue.number | 2 | |
dc.journal.title | Geometric and Functional Analysis | |
dc.language.iso | eng | |
dc.page.final | 205 | |
dc.page.initial | 181 | |
dc.publisher | SpringerLink | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | restricted access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.keyword | Entangleability | |
dc.subject.keyword | General probabilistic theories | |
dc.subject.keyword | Tensor product of cones | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Entangleability of cones | en |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 31 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 09970d9e-6722-4f02-aac0-023cf9867638 | |
relation.isAuthorOfPublication.latestForDiscovery | 09970d9e-6722-4f02-aac0-023cf9867638 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Entangleability_of_cones.pdf
- Size:
- 525.3 KB
- Format:
- Adobe Portable Document Format