Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Entangleability of cones

dc.contributor.authorPalazuelos Cabezón, Carlos
dc.date.accessioned2024-01-29T09:28:20Z
dc.date.available2024-01-29T09:28:20Z
dc.date.issued2021
dc.description.abstractWe solve a long-standing conjecture by Barker, proving that the minimal and maximal tensor products of two finite-dimensional proper cones coincide if and only if one of the two cones is generated by a linearly independent set. Here, given two proper cones , , their minimal tensor product is the cone generated by products of the form , where and , while their maximal tensor product is the set of tensors that are positive under all product functionals , where and . Our proof techniques involve a mix of convex geometry, elementary algebraic topology, and computations inspired by quantum information theory. Our motivation comes from the foundations of physics: as an application, we show that any two non-classical systems modelled by general probabilistic theories can be entangled.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipSlovak Research and Development Agency
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.statuspub
dc.identifier.citationG. Aubrun, L. Lami, C. Palazuelos, M. Plávala, Entangleability of cones, Geom. Funct. Anal. 31 (2021) 181–205. https://doi.org/10.1007/s00039-021-00565-5.
dc.identifier.doi10.1007/S00039-021-00565-5
dc.identifier.essn1420-8970
dc.identifier.issn1016-443X
dc.identifier.officialurlhttps://doi.org/10.1007/S00039-021-00565-5
dc.identifier.urihttps://hdl.handle.net/20.500.14352/95783
dc.issue.number2
dc.journal.titleGeometric and Functional Analysis
dc.language.isoeng
dc.page.final205
dc.page.initial181
dc.publisherSpringerLink
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordEntangleability
dc.subject.keywordGeneral probabilistic theories
dc.subject.keywordTensor product of cones
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleEntangleability of conesen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number31
dspace.entity.typePublication
relation.isAuthorOfPublication09970d9e-6722-4f02-aac0-023cf9867638
relation.isAuthorOfPublication.latestForDiscovery09970d9e-6722-4f02-aac0-023cf9867638

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Entangleability_of_cones.pdf
Size:
525.3 KB
Format:
Adobe Portable Document Format

Collections