Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Entangleability of cones

dc.contributor.authorPalazuelos Cabezón, Carlos
dc.date.accessioned2024-01-29T09:28:20Z
dc.date.available2024-01-29T09:28:20Z
dc.date.issued2021
dc.description.abstractWe solve a long-standing conjecture by Barker, proving that the minimal and maximal tensor products of two finite-dimensional proper cones coincide if and only if one of the two cones is generated by a linearly independent set. Here, given two proper cones , , their minimal tensor product is the cone generated by products of the form , where and , while their maximal tensor product is the set of tensors that are positive under all product functionals , where and . Our proof techniques involve a mix of convex geometry, elementary algebraic topology, and computations inspired by quantum information theory. Our motivation comes from the foundations of physics: as an application, we show that any two non-classical systems modelled by general probabilistic theories can be entangled.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipSlovak Research and Development Agency
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.statuspub
dc.identifier.citationG. Aubrun, L. Lami, C. Palazuelos, M. Plávala, Entangleability of cones, Geom. Funct. Anal. 31 (2021) 181–205. https://doi.org/10.1007/s00039-021-00565-5.
dc.identifier.doi10.1007/S00039-021-00565-5
dc.identifier.essn1420-8970
dc.identifier.issn1016-443X
dc.identifier.officialurlhttps://doi.org/10.1007/S00039-021-00565-5
dc.identifier.urihttps://hdl.handle.net/20.500.14352/95783
dc.issue.number2
dc.journal.titleGeometric and Functional Analysis
dc.language.isoeng
dc.page.final205
dc.page.initial181
dc.publisherSpringerLink
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordEntangleability
dc.subject.keywordGeneral probabilistic theories
dc.subject.keywordTensor product of cones
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleEntangleability of conesen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number31
dspace.entity.typePublication
relation.isAuthorOfPublication09970d9e-6722-4f02-aac0-023cf9867638
relation.isAuthorOfPublication.latestForDiscovery09970d9e-6722-4f02-aac0-023cf9867638

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Entangleability_of_cones.pdf
Size:
525.3 KB
Format:
Adobe Portable Document Format

Collections