Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Data boundary fitting using a generalized least-squares method

dc.contributor.authorCardiel López, Nicolás
dc.date.accessioned2023-06-20T03:47:40Z
dc.date.available2023-06-20T03:47:40Z
dc.date.issued2009-06-21
dc.descriptionThis article has been accepted for publication in Monthly notices of the Royal Astronomical Society. © 2009 The Author. Journal compilation © 2009 RAS. Published by Oxford University Press on behalf of the Royal Astronomical Society. Valuable discussions with Guillermo Barro, Juan Carlos Muñoz and Javier Cenarro are gratefully acknowledged. The author is also grateful to the referee, Charles Jenkins, for his useful comments. This work was supported by the Spanish Programa Nacional de Astronomía y Astrofísica under grant AYA2006–15698–C02–02.
dc.description.abstractIn many astronomical problems one often needs to determine the upper and/or lower boundary of a given data set. An automatic and objective approach consists in fitting the data using a generalized least-squares method, where the function to be minimized is defined to handle asymmetrically the data at both sides of the boundary. In order to minimize the cost function, a numerical approach, based on the popular DOWNHILL simplex method, is employed. The procedure is valid for any numerically computable function. Simple polynomials provide good boundaries in common situations. For data exhibiting a complex behaviour, the use of adaptive splines gives excellent results. Since the described method is sensitive to extreme data points, the simultaneous introduction of error weighting and the flexibility of allowing some points to fall outside of the fitted frontier, supplies the parameters that help to tune the boundary fitting depending on the nature of the considered problem. Two simple examples are presented, namely the estimation of spectra pseudo-continuum and the segregation of scattered data into ranges. The normalization of the data ranges prior to the fitting computation typically reduces both the numerical errors and the number of iterations required during the iterative minimization procedure.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Programa Nacional de Astronomía y Astrofísica
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28040
dc.identifier.doi10.1111/j.1365-2966.2009.14749.x
dc.identifier.issn0035-8711
dc.identifier.officialurlhttp://dx.doi.org/10.1111/j.1365-2966.2009.14749.x
dc.identifier.relatedurlhttp://mnras.oxfordjournals.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44454
dc.issue.number2
dc.journal.titleMonthly notices of the Royal Astronomical Society
dc.language.isoeng
dc.page.final695
dc.page.initial680
dc.publisherWiley
dc.relation.projectIDAYA2006–15698–C02–02
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordResolution
dc.subject.keywordGalaxies. Spectra
dc.subject.keywordGiants
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleData boundary fitting using a generalized least-squares method
dc.typejournal article
dc.volume.number396
dcterms.referencesBazaraa M. S., Sherali H. D., Shetty C. M., 1993, Nonlinear Programming: Theory and Algorithms, 2nd edn. Wiley, New York Cardiel N., 1999, PhD thesis, Universidad Complutense de Madrid Cardiel N., Elbaz D., Schiavon R. P., Willmer C. N. A., Koo D. C., Phillips A. C., Gallego J., 2003, ApJ, 584, 76 Faber S. M., 1973, ApJ, 179, 731 Faber S. M., Burstein D., Dressler A., 1977, AJ, 82, 941 Fletcher R., 2007, Practical Methods of Optimization, 2nd edn.Wiley, New York Geisler D., 1984, PASP, 96, 723 Gerald C. F., Wheatley P. O., 1989, Applied Numerical Analysis, 4th edn. Addison-Wesley, Reading, MA Gill P. E.,MurrayW., Wright M. H., 1989, Practical Optimization. Academic Press, New York Haupt R. L., Haupt S. E., 2004, Practical Genetic Algorithms, 2nd edn. Wiley-Interscience, New York Nelder J. A., Mead R., 1965, Comput. J., 7, 308 Nocedal J.,Wright S. J., 2006, Numerical Optimization, 2nd edn. Springer-Verlag, Berlin Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 2002, Numerical Recipes in C++, 2nd edn. Cambridge Univ. Press, Cambridge Rao S. S., 1978, Optimization: Theory and Applications. Wiley Eastern, New Delhi Rich R. M., 1988, AJ, 95, 828 Rogers B., Ferreras I., Peletier R., Silk J., 2008, MNRAS, in press (astroph/0812.2029) Rose J. A., 1994, AJ, 107, 206 Sánchez Blázquez P. et al., 2006, MNRAS, 371, 703 Trager S. C., 1997, PhD thesis, Univ. California, Santa Cruz Vazdekis A., Arimoto N., 1999, ApJ, 525, 144 Whitford A. E., Rich R. M., 1983, ApJ, 274, 723 Whorthey G., Ottaviani D. L., 1997, ApJS, 111, 377
dspace.entity.typePublication
relation.isAuthorOfPublication2b15a442-d308-49d5-beda-1a98bb9db11e
relation.isAuthorOfPublication.latestForDiscovery2b15a442-d308-49d5-beda-1a98bb9db11e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cardiel24.pdf
Size:
8.44 MB
Format:
Adobe Portable Document Format

Collections