Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Transverse momentum dependent fragmentation function at next-to-next-to-leading order

dc.contributor.authorEchevarria, Miguel G.
dc.contributor.authorScimemi, Ignazio
dc.contributor.authorVladimirov, Aleksey
dc.date.accessioned2023-06-18T06:51:00Z
dc.date.available2023-06-18T06:51:00Z
dc.date.issued2016-01-21
dc.description© 2016 American Physical Society. We thank Ahmad Idilbi and Takahiro Ueda for useful discussions. M.G. E. is supported by the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM), which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). I. S. is supported by the Spanish MECD Grant No. FPA2011-27853-CO2-02 andFPA2014-53375-C2-2-P. A. V. is supported in part by the European Community-Research Infrastructure Integrating Activity “Study of Strongly Interacting Matter” (HadronPhysics3, Grant Agreement No. 283286) and theSwedish Research Council, Grants No. 621-2011-5080 and No. 621-2013-4287.
dc.description.abstractWe calculate the unpolarized transverse momentum dependent fragmentation function at next-to-next-to-leading order, evaluating separately the transverse momentum dependent (TMD) soft factor and the TMD collinear correlator. For the first time, the cancellation of spurious rapidity divergences in a properly defined individual TMD beyond the first nontrivial order is shown. This represents a strong check of the given TMD definition. We extract the matching coefficient necessary to perform the transverse momentum resummation at next-to-next-to-next-to-leading-logarithmic accuracy. The universal character of the soft function, which enters the definition of all (un)polarized TMD distribution/fragmentation functions, facilitates the future calculation of all the other TMDs and their coefficients at next-to-next-to-leading order, pushing forward the accuracy of theoretical predictions for the current and next generation of high energy colliders.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte (MECD), España
dc.description.sponsorship“Stichting voor Fundamenteel Onderzoek der Materie” (FOM)
dc.description.sponsorshipNederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Holanda
dc.description.sponsorshipSwedish Research Council
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36523
dc.identifier.doi10.1103/PhysRevD.93.011502
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.93.011502
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24395
dc.issue.number1
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDHadronPhysics3 (283286)
dc.relation.projectIDFPA2011-27853-CO2-02
dc.relation.projectIDFPA2014-53375-C2-2-P
dc.relation.projectID621-2011-5080
dc.relation.projectID621-2013-4287
dc.rights.accessRightsopen access
dc.subject.cdu53-71
dc.subject.keywordParton distribution-functions
dc.subject.keyword3-loop splitting functions
dc.subject.keywordExponentiation
dc.subject.keywordDistributions
dc.subject.keywordNNLO
dc.subject.keywordQCD.
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleTransverse momentum dependent fragmentation function at next-to-next-to-leading order
dc.typejournal article
dc.volume.number93
dcterms.references[1] J. C. Collins and D. E. Soper, Parton distribution and decay functions, Nucl. Phys. B194, 445 (1982). [2] J. C. Collins and D. E. Soper, Back-to-back jets in QCD, Nucl. Phys. B193, 381 (1981); 213B, 545 (1983). [3] J. C. Collins, Foundations of Perturbative QCD (Cambridge University Press, Cambridge, 2011). [4] M. G. Echevarria, A. Idilbi, and I. Scimemi, Soft and collinear factorization and transverse momentum dependent parton distribution functions, Phys. Lett. B 726, 795 (2013). [5] M. G. Echevarria, A. Idilbi, and I. Scimemi, Unified treatment of the QCD evolution of all (un-)polarized transverse momentum dependent functions: Collins function as a study case, Phys. Rev. D 90, 014003 (2014). [6] S. M. Aybat and T. C. Rogers, TMD parton distribution and fragmentation functions with QCD evolution, Phys. Rev. D 83, 114042 (2011). [7] M. G. Echevarria, A. Idilbi, and I. Scimemi, Factorization theorem for Drell-Yan at low qT and transverse momentum distributions on-the-light-cone, J. High Energy Phys. 07 (2012) 002. [8] A. A. Vladimirov, TMD PDFs in the Laguerre polynomial basis, J. High Energy Phys. 08 (2014) 089. [9] A. Bacchetta and A. Prokudin, Evolution of the helicity and transversity transverse-momentum-dependent parton distributions, Nucl. Phys. B875, 536 (2013). [10] M. G. Echevarria, T. Kasemets, P. J. Mulders, and C. Pisano, QCD evolution of (un)polarized gluon TMDPDFs and the Higgs qT-distribution, J. High Energy Phys. 07 (2015) 158. [11] R. Zhu, P. Sun, and F. Yuan, Low transverse momentum heavy quark pair production to probe gluon tomography, Phys. Lett. B 727, 474 (2013). [12] S. Catani and M. Grazzini, Higgs boson production at hadron colliders: Hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72, 2013 (2012); 72, 2132 (2012). [13] S. Catani, L. Cieri, D. de Florian, G. Ferrera, and M. Grazzini, Vector boson production at hadron colliders: Hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72, 2195 (2012). [14] S. Catani,L. Cieri, D. de Florian, G. Ferrera, and M. Grazzini, Universality of transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B881, 414 (2014). [15] T. Gehrmann, T. Lubbert, and L. L. Yang, Transverse Parton Distribution Functions atNext-to-Next-to-Leading Order: The Quark-to-Quark Case, Phys. Rev. Lett. 109, 242003 (2012). [16] T. Gehrmann, T. Luebbert, and L. L. Yang, Calculation of the transverse parton distribution functions at next-to-nextto- leading order, J. High Energy Phys. 06 (2014) 155. [17] M. G. Echevarria, I. Scimemi, and A. Vladimirov, The universal transverse momentum dependent soft function at NNLO, arXiv:1511.05590. [18] A. Bacchetta, M. G. Echevarria, P. J. G. Mulders, M. Radici, and A. Signori, Effects of TMD evolution and partonic flavor on eþe− annihilation into hadrons, J. High Energy Phys. 11 (2015) 076. [19] R. Angeles-Martinez et al., Transverse momentum dependent (TMD) parton distribution functions: Status and prospects, Acta Phys. Polon. B 46, 2501 (2015). [20] A. V. Belitsky, X. Ji, and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B656, 165 (2003). [21] A. Idilbi and I. Scimemi, Singular and regular gauges in soft collinear effective theory: The introduction of the new Wilson line T, Phys. Lett. B 695, 463 (2011). [22] M. Garcia-Echevarria, A. Idilbi, and I. Scimemi, SCET, Light-cone gauge and the T-Wilson lines, Phys. Rev. D 84, 011502 (2011). [23] C. Lee and G. F. Sterman, Momentum flow correlations from event shapes: Factorized soft gluons and soft-collinear effective theory, Phys. Rev. D 75, 014022 (2007). [24] A. Idilbi and T. Mehen, On the equivalence of soft and zerobin subtractions, Phys. Rev. D 75, 114017 (2007). [25] A. Idilbi and T. Mehen, Demonstration of the equivalence of soft and zero-bin subtractions, Phys. Rev. D 76, 094015 (2007). [26] J. C. Collins and T. C. Rogers, Equality of two definitions for transverse momentum dependent parton distribution functions, Phys. Rev. D 87, 034018 (2013). [27] M. G. Echevarria, I. Scimemi, and A. Vladimirov, Fragmentation in jets at NNLO (to be published). [28] J. Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, J. High Energy Phys. 05 (2012) 084. [29] I. O. Cherednikov and N. G. Stefanis, Wilson lines and transverse-momentum dependent parton distribution functions: A Renormalization-group analysis, Nucl. Phys. B802, 146 (2008). [30] J. G. M. Gatheral, Exponentiation of eikonal cross sections in nonabelian gauge theories, Phys. Lett. 133B, 90 (1983). [31] J. Frenkel and J. C. Taylor, Non-abelian eikonal exponentiation, Nucl. Phys. B246, 231 (1984). [32] A. A. Vladimirov, Exponentiation for products of Wilson lines within the generating function approach, J. High Energy Phys. 06 (2015) 120. [33] S. Moch and J. A. M. Vermaseren, Deep inelastic structure functions at two loops, Nucl. Phys. B573, 853 (2000). [34] S. Moch, J. A. M. Vermaseren, and A. Vogt, The Three loop splitting functions in QCD: The nonsinglet case, Nucl. Phys. B688, 101 (2004). [35] A. Vogt, S. Moch, and J. A. M. Vermaseren, The three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B691, 129 (2004). [36] M. Ritzmann and W. J. Waalewijn, Fragmentation in ets at NNLO, Phys. Rev. D 90, 054029 (2014).
dspace.entity.typePublication
relation.isAuthorOfPublicationf5801569-ad40-467a-adc2-a6f592e4d094
relation.isAuthorOfPublication.latestForDiscoveryf5801569-ad40-467a-adc2-a6f592e4d094

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
scimeni38libre.pdf
Size:
139.41 KB
Format:
Adobe Portable Document Format

Collections