Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermal uncertainty analysis of a single particle model for a Lithium-Ion cell

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

In recent years, the sustained increase in the worldwide demand for lithium batteries goes side by side with the need for reliable methods to assess battery performance. Of particular importance is assessing Lithium-Ion cell’s thermal behavior given its role on hazard and aging of batteries. An essential task towards developing battery management systems is the estimation of physical parameters and their uncertainties in terms of both models and observations. Consequently, this paper analyzes the uncertainty in a thermal single particle model for a lithium-ion cell. In the first part of the manuscript, we explore the model adequacy by analyzing the forward and backward uncertainty propagation in the model in terms of diffusion coefficients, reaction rate constants, and observations of cell voltage. In the second part of the manuscript, we infer the cell’s reversible heat given the energy balance equation and the cell’s temperature observations. We argue that the methods proposed here may be extended to analyze other more general lithium-ion models

Research Projects

Organizational Units

Journal Issue

Description

Acuerdo transformativo

Keywords

Collections