On compactness results of Lions-Peetre type for bilinear operators
Loading...
Download
Official URL
Full text at PDC
Publication date
2019
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
Let Ā = (A₀ , A₁) , B̄ = (B₀ , B₁) be Banach couples, let E be a Banach space and let T be a bilinear operator such that ||T(a, b)||ᴇ ≤ M[sub]j ||a||ᴀ[sub]j ||b||ʙ[sub]j for a ∈ A₀ ∩ A₁, b ∈ B₀ ∩ B₁, j = 0, 1. If T : A°[sub]j × B°[sub]j −→ E compactly for j = 0 or 1, we show that T may be uniquely extended to a compact bilinear operator from the complex interpolation spaces generated by Ā and B̄ to E. Furthermore, the corresponding result for the real method is given and we also study the case when E is replaced by a couple (E₀, E₁) of Banach function spaces on the same measure space.