Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On compactness results of Lions-Peetre type for bilinear operators

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

Let Ā = (A₀ , A₁) , B̄ = (B₀ , B₁) be Banach couples, let E be a Banach space and let T be a bilinear operator such that ||T(a, b)||ᴇ ≤ M[sub]j ||a||ᴀ[sub]j ||b||ʙ[sub]j for a ∈ A₀ ∩ A₁, b ∈ B₀ ∩ B₁, j = 0, 1. If T : A°[sub]j × B°[sub]j −→ E compactly for j = 0 or 1, we show that T may be uniquely extended to a compact bilinear operator from the complex interpolation spaces generated by Ā and B̄ to E. Furthermore, the corresponding result for the real method is given and we also study the case when E is replaced by a couple (E₀, E₁) of Banach function spaces on the same measure space.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections