On the limit of solutions of ut=Δum as m→∞
dc.book.title | Some topics in nonlinear PDEs | |
dc.contributor.author | Bénilan, Philippe | |
dc.contributor.author | Boccardo, L. | |
dc.contributor.author | Herrero, Miguel A. | |
dc.date.accessioned | 2023-06-20T21:07:57Z | |
dc.date.available | 2023-06-20T21:07:57Z | |
dc.date.issued | 1989 | |
dc.description | Proceedings of the conference held in Turin, October 2–6, 1989 | |
dc.description.abstract | Let f∈L1(RN), N≥1, f≥0, and consider the Cauchy problem ut=Δum on ]0,∞[×RN, u(0,⋅)=f on RN. The authors prove that as m→∞, the corresponding solutions um(t)→u_=f+Δw in L1(RN), uniformly for t in a compact set in ]0,∞[, where 0≤w_∈L1(Rn) is the solution of the variational inequality Δw_∈L1(RN), 0≤f+Δw_≤1, w_(f+Δw_ −1)=0 a.e. The authors also show similar results for the same equation on a bounded open set Ω in RN with Dirichlet or Neumann boundary conditions | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22719 | |
dc.identifier.isbn | 0373-1243 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/60767 | |
dc.issue.number | 47, Sp | |
dc.language.iso | eng | |
dc.page.final | 13 | |
dc.page.initial | 1 | |
dc.page.total | 168 | |
dc.publication.place | Torino | |
dc.publisher | Libreria Editrice Universitaria Levrotto & Bella | |
dc.relation.ispartofseries | Università e Politecnico di Torino. Seminario Matematico. Rendiconti | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | On the limit of solutions of ut=Δum as m→∞ | |
dc.type | book part | |
dcterms.references | D.G. Aronson, Ph. Bénilan. Régularité des solutions de l'équations des milieux poreux dans RN. C.R.Ac. Se. Paris 288 (1979), pp. 103-105. Ph. Bénilan, A strong regularity Lp for solutions of the porous medium equation. Contribution nonlinear pde. Res. Notes in Math. 89. Pitman (1983), pp. 39-58. Ph. Bénilan, H. Brézis, M.G. Crandall. A semilinear elliptic equation in L1(RN). Ann. Sc. Norm. Sup. Pisa. V,2. (1975), pp. 523-555. Ph. Bénilan, M.G. Crandall. Regularizing effect of homogeneous evolutions equations. Contributions to Analysis and Geometry, D.N. Clarke & al eds, John Hopkins Un. Press, Baltimore (1981), pp. 23-30. Ph. Bénilan, M.G. Crandall, P.E. Sacks. Some L1 existence and dependance results for semilinear elliptic equations under nonlinear boundary conditions. Appl. Math. Optim. 17 (1988), pp. 203-224. H. Brézis, W. Strauss. Semilinear elliptic equations in L1. J. Math. Soc. Japan, 25 (1973), pp. 565-590. L.A. Caffarelli, A. Friedman. Asymptotic behavior of solutions of ut = Δum as m → ∞. Indiana Un. Math. J. 36,4 (1987), pp. 711-718. C.M. Elliot, M.A. Herrero, J.R. King. J.R. Ockendon. The mesa problem: diffusion patterns for ut = (umu) as m → ∞. IMA J. Appl. Maths 37 (1986), pp. 147-154. P.E. Sacks. A gingillar limit problem for the porous medium equation. J.Math. Anal. Appl. 140,2 (1989), pp. 456-466. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1