Thermal properties of spacetime foam

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Amer Physical Soc
Google Scholar
Research Projects
Organizational Units
Journal Issue
Spacetime foam can be modeled in terms of nonlocal effective interactions in a classical nonfluctuating background. Then, the density matrix for the low-energy fields evolves, in the weak-coupling approximation, according to a master equation that contains a diffusion term. Furthermore, it is argued that spacetime foam behaves as a quantum thermal field that, apart from inducing loss of coherence, gives rise to effects such as gravitational Lamb and Stark shifts as well as quantum damping in the evolution of the low-energy observables. These effects can be, at least in principle, experimentally tested. [S0556-2821(98)04524-X].
© 1998 The American Physical Society. I am very grateful to G. A. Mena Marugán, P. F. González-Díaz, C. Barceló, J. M. aya, I. L. Egusquiza, C. Cabrillo, and J. I. Cirac for helpful discussions. I was supported by funds provided by DGICYT and MEC (Spain) under Contract Adjunct to the Project No. PB94-0107.
Unesco subjects
[1] J. A. Wheeler, Ann. Phys. 8N.Y.) 2, 604 (1957); J. A. Wheeler, Geometrodynamics (Academic, London, 1962); J. A. Wheeler, in Relativity, Groups and Topology, edited by B. S. and C. M. DeWitt (Gordon and Breach, New York, 19649. [2] S. W. Hawking, Nucl. Phys. B144, 349 (1978). [3] S. Carlip, Phys. Rev. Lett. 79, 4071 (1997); Class. Quantum Grav. 15, 2629 (1998. [4] S. W. Hawking, Phys. Rev. D 37, 904 (1988). [5] S. Coleman, Nucl. Phys. B307, 867 (1988). [6] S. W. Hawking, Phys. Rev. D 53, 3099 (1996). [7] S. W. Hawking, Phys. Rev. D 52, 5681 (1995). [8] P. F. Gonzaález-Díaz, Phys. Rev. D (to be published) gr-qc/9712033; in Proceedings of the International Seminar on Mathematical Cosmology, edited by U. Kasper, M. Rainer, and H. J. Schmidt (World Scientific, Singapore, in press). [9] C. J. Isham, in Proceedings of the 14th International Conference on General Relativity and Gravitation (World Scientific, Singapore, 1997). [10] L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995). [11] T. Padmanabhan, hep-th/9801138; hep-th/9801015. [12] S. W. Hawking, Commun. Math. Phys. 87, 395 (1982). [13] C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991). [14] H. Carmichel, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, 1993). [15] J. Ellis, J. S. Hagelin, D. V. Nanopoulos, and M. Srednicki, Nucl. Phys. B241, 381 (1984). [16] G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Nature ~London! 393, 763 (1998). 17] L. J. Garay, Phys. Rev. Lett. 80, 2508 (1998). [18] W. G. Unruh and R. M. Wald, Phys. Rev. D 52, 2176 (1995). [19] D. A. Eliezer and R. P. Woodard, Nucl. Phys. B325, 389 (1989). [20] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd ed. (Oxford University Press, Oxford, 1996). [21] T. Banks, L. Susskind, and M. E. Peskin, Nucl. Phys. B244, 125 (1984). [22] M. Reed and B. Simon, Methods of Modern Mathematical Physics I. Functional Analysis (Academic, New York, 1972). [23] C. Itzykson and J. B. Zuber, Quantum Field Theory (McGrawHill, Singapore, 1985). [24] P. Huet and M. E. Peskin, Nucl. Phys. B434, 3 (1995); P. Huet, ‘‘CPT violation from Planck scale physics,’’ hep-ph/9607435. [25] F. Benatti and R. Floreanini, Nucl. Phys. B511, 550 (1998). [26] D. N. Page, Gen. Relativ. Gravit. 14, 299 (1982). [27] A. Zeilinger, M. A. Horne, and C. G. Shull, in Proceedings of the International Symposium on the Foundations of Quantum Mechanics, edited by S. Kamefuchi et al. (Physical Society of Japan, Tokyo, 1984). [28] G. W. Gibbons, in Fields and Geometry 1986, edited by A. Jadczyk (World Scientific, Singapore, 1986). [29] F. J. Ernst, J. Math. Phys. 17, 515 (1976). [30] M. J. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988); M. J. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988). [31] S. W. Hawking, Phys. Rev. D 46, 603 (1992). [32] Li-Xin Li and J. R. Gott III, Phys. Rev. Lett. 80, 2980 (1998). [33] L. J. Garay, (unpublished). [34] L. J. Garay, in Proceedings of the International Seminar on Mathematical Cosmology, edited by U. Kasper, M. Rainer, and H. J. Schmidt (World Scientific, Singapore, in press). [35] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965). [36] R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963). [37] A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).