Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd

dc.contributor.authorRobinson, James C.
dc.contributor.authorRodríguez Bernal, Aníbal
dc.date.accessioned2023-11-17T09:31:04Z
dc.date.available2023-11-17T09:31:04Z
dc.date.issued2018-06-19
dc.description.abstractWe analyse the behaviour of solutions of the linear heat equation in Rd for initial data in the classes Mε (Rd ) of Radon measures with e−ε|x|2 d|u0| < ∞. We show that Rd these classes are optimal for local and global existence of non-negative solutions: in particular M0(Rd) := ∩ε>0Mε(Rd) consists of those initial data for which a solution of the heat equation can be given for all time using the heat kernel representation formula. We prove existence, uniqueness, and regularity results for such initial data, which can grow rapidly at infinity, and then show that they give rise to properties associated more often with nonlinear models. We demonstrate the finite-time blowup of solutions, showing that the set of blowup points is the complement of a convex set, and that given any closed convex set there is an initial condition whose solutions remain bounded precisely on this set at the ‘blowup time’. We also show that wild oscillations are possible from non-negative initial data as t → ∞ and that one can prescribeen
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipMinisterio de Educación, Formación Profesional y Deportes (España)
dc.description.sponsorshipEngineering and Physical Sciences Research Council (Reino Unido)
dc.description.statuspub
dc.identifier.citationRobinson, J. C., & Rodríguez-Bernal, A. (2018). Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd. Advances In Mathematics, 334, 488-543. https://doi.org/10.1016/j.aim.2018.06.009
dc.identifier.doi10.1016/j.aim.2018.06.009
dc.identifier.officialurlhttps//doi.org/10.1016/j.aim.2018.06.009
dc.identifier.relatedurlhttp://www.elsevier.com/locate/aim
dc.identifier.urihttps://hdl.handle.net/20.500.14352/88777
dc.journal.titleAdvances in Mathematics
dc.language.isoeng
dc.page.final543
dc.page.initial488
dc.publisherElsevier
dc.relation.projectIDMTM2016-75465
dc.relation.projectIDPRX17/00522
dc.relation.projectIDEPSRC grant EP/R023778/1
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu517.9
dc.subject.keywordHeat equation
dc.subject.keywordAsymptotic behaviour
dc.subject.keywordBlowup
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.subject.unesco1206.02 Ecuaciones Diferenciales
dc.titleOptimal existence classes and nonlinear-like dynamics in the linear heat equation in Rden
dc.typejournal article
dc.type.hasVersionCVoR
dc.volume.number334
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rodriguez_bernal_optimal.pdf
Size:
442.68 KB
Format:
Adobe Portable Document Format

Collections